
## STAINLESS STEEL LONG PRODUCTS





### STAINLESS STEEL LONG PRODUCTS MANUFACTURING PROCESS

#### **INDEX**



|        | STAINLESS STEEL LONG PRODUCTS                                                   |       |
|--------|---------------------------------------------------------------------------------|-------|
| 000000 |                                                                                 |       |
|        | Companies and product range                                                     | _ 13  |
|        |                                                                                 |       |
|        | 000000000000000000000000000000000000000                                         |       |
|        | MARCEGAGLIA STAINLESS SHEFFIELD                                                 |       |
|        |                                                                                 |       |
|        | Stainless steel semi-finished products                                          | _ 21  |
|        | Stainless steel wire rods                                                       | _ 31  |
|        | Stainless steel rebar                                                           | _ 41  |
|        | Stainless steel bars                                                            | _ 53  |
|        | Prodec® improved machinability bar                                              | _ 70  |
|        | Prodec® datasheet - Stainless steel bar optimized for improved machinability    | _ 74  |
|        | Machining guideline for Prodec® 304L/4307 and Prodec® 316L/4404                 | _ 80  |
|        | Machining guideline for Prodec® 303/4305                                        | 82    |
|        |                                                                                 |       |
|        |                                                                                 |       |
|        | MARCEGAGLIA FAGERSTA STAINLESS                                                  |       |
|        | 00 00000 0 0 00                                                                 |       |
|        | Stainless steel wire rods and wires                                             | OF.   |
|        |                                                                                 | 85    |
|        | Wire rod for welding                                                            | 92    |
|        | Wire rod for cold heading                                                       | 94    |
|        | Wire rod for high temperature                                                   | 95    |
|        | White roa for springs                                                           | 96    |
|        | Wire rod in duplex                                                              | 97    |
|        | Bright forming wire                                                             | _ 98  |
|        | Cold heading wire                                                               | 100   |
|        | Vector® spoke wire                                                              | 101   |
|        | Fagersta Stainless standard range of grades                                     | 102   |
|        | Fagersta Stainless packaging methods                                            | 103   |
|        |                                                                                 |       |
|        |                                                                                 |       |
|        | MARCEGAGLIA STAINLESS RICHBURG                                                  |       |
|        |                                                                                 |       |
|        | Stainless steel bars                                                            | 105   |
|        | Prodec® datasheet US - Stainless steel bar optimized for improved machinability | _ 112 |

118

120

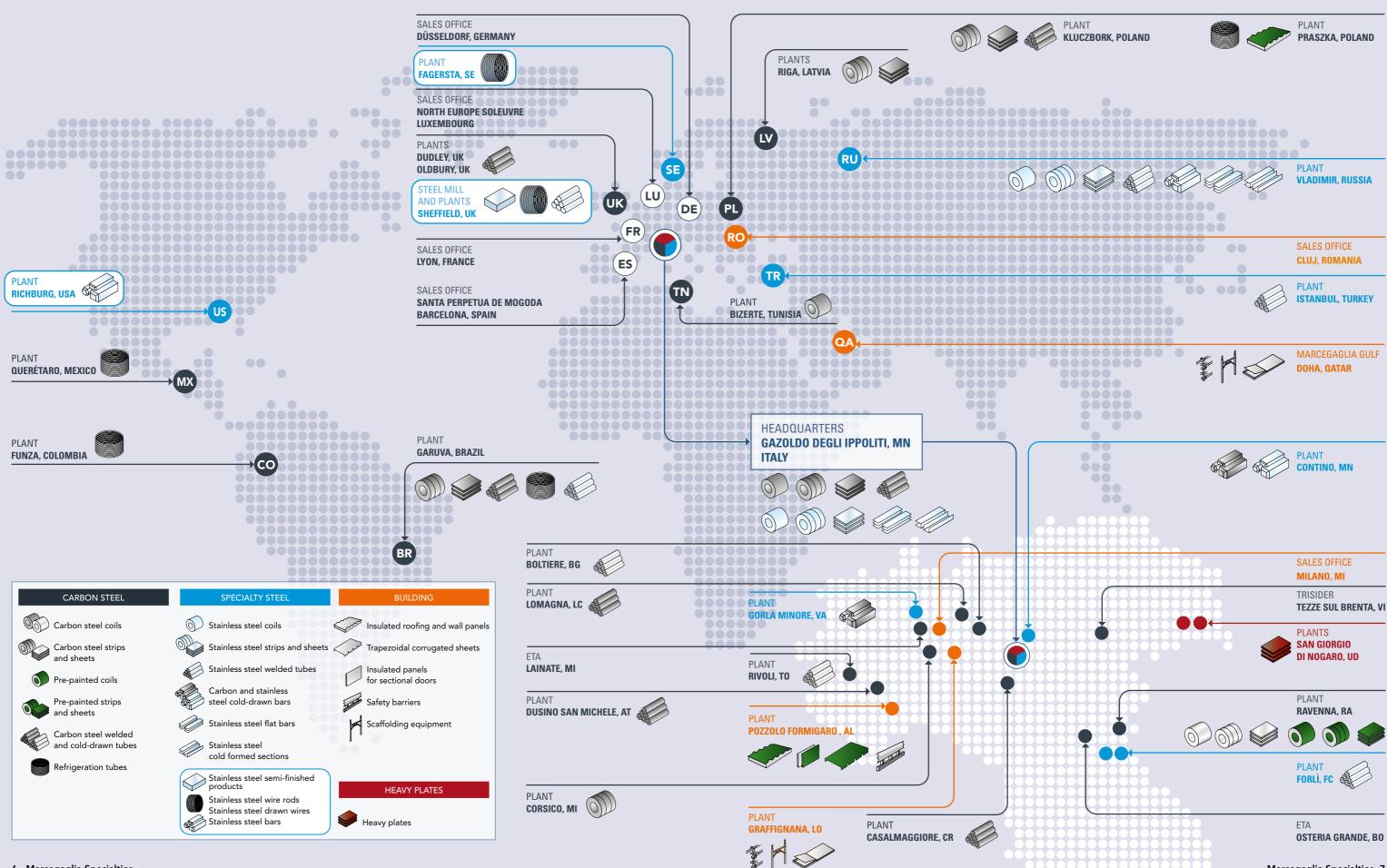
Machining guideline for Prodec® 304L and Prodec® 316L

Machining guideline for Prodec® 303

2 Marcegaglia Specialties 3



- 6.5 million tonnes of finished product
- 9.0 billion Euros in turnover
- 7,500 employees
- 36 plants across 4 continents
- **15,000** customers
- 1st player in steel processing sector in the world
- 1st producer of stainless steel welded tubes in the world
- 1st producer of carbon steel welded tubes in Europe
- 1st service center in Italy


## INTERNATIONAL PLAYER IN STEEL

Marcegaglia is the italian industrial group leading the European and worldwide steel market.

A unique combination of the dynamic Italian family business model with the great operating capacity and presence in the international markets, typical of the large corporations.

With 6.5 million tons of steel processed every year and 9 billion euros of yearly revenues,
Marcegaglia is one of the leading players in the world steel scenario.

#### **WORLDWIDE PRESENCE**





#### STRATEGIC RESOURCES AND DISTINCTIVE SKILLS:

SOLID GLOBAL PROCUREMENT NETWORK

**DIVERSIFIED RANGE OF PRODUCTS AND SERVICES** 

WORLDWIDE DISTRIBUTION (CUSTOMER BASE, GEOGRAPHIC MARKETS, AREAS OF USE)

OPERATIONAL EXCELLENCE AND LOGISTICS

FLEXIBILITY / REACTIVITY / SPEEDY DECISION MAKING

SERVICE ORIENTATION

COMPETENCE / MOTIVATION / STABILITY OF MANAGEMENT

## FLEXIBLE SOUL

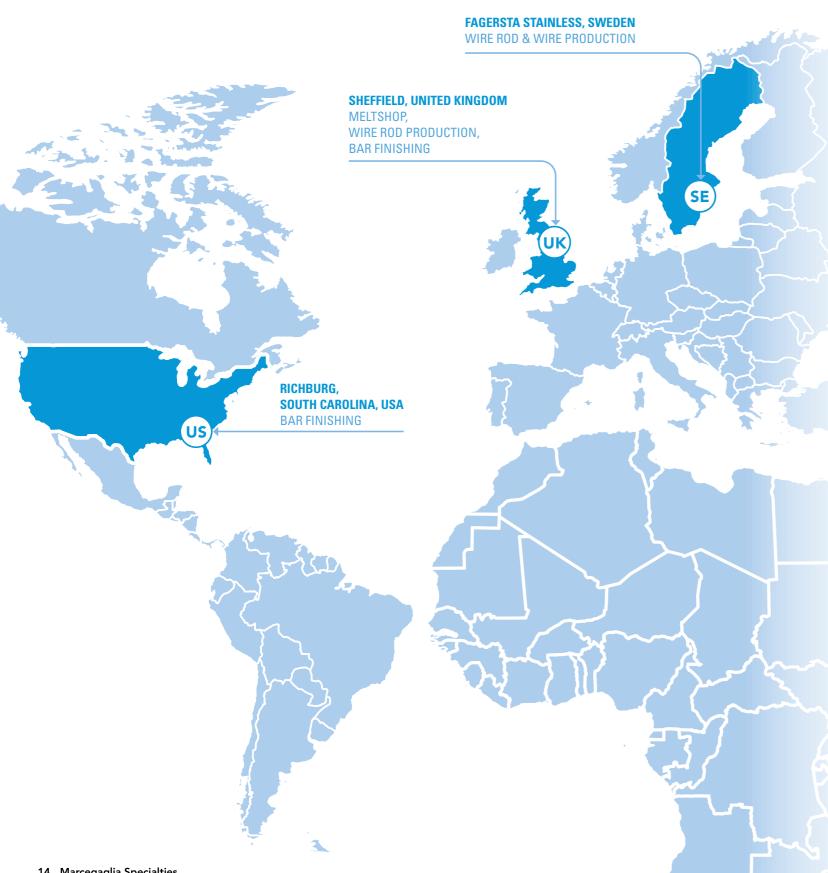
Independence, dynamism, agility, responsiveness, resilience and sustainability are the key elements of Marcegaglia corporate culture: factors that have helped make the company the main point of reference for steel processing both in Italy and abroad. Marcegaglia is able to successfully operate, even given the most difficult markets and geopolitical conditions, thanks to industrial synergies, economies of scale and the diversification of production and supply.

Group culture focuses on the role of people and on sharing specific values, which have become the cornerstones of its business model.








Ready to seize every opportunity for growth whilst paying constant attention to customers needs, Marcegaglia Group has created a network of 36 production plants that guarantee the very best skills, quality, service and know-how, along with a highly efficient logistics and distribution network.

The large number of hubs located in Europe's most strategic manufacturing districts and its privately-owned railway terminals and port facilities in the Mediterranean (Ravenna, San Giorgio di Nogaro and Bizerte) allow the company to meet requests from around the globe and ensuring its international customers prompt, flexible and punctual product delivery..





## Stainless steel long products



## High performance stainless steel long products

Marcegaglia Long Products is a global producer of high-quality stainless steel long products. We are known for our ability to offer products in a wide range of grades, shapes and sizes, with high quality and reliability.

Our stainless steel is melted in Europe with over 90% recycled stainless steel scrap content and by using an efficient energy mix we can provide our customers lower than industry average carbon footprint.

Marcegaglia Long Products is the inventor of stainless steel dating back to 1913 in Sheffield, UK when Harry Brearley discovered the martensitic stainless steel. We are also the first in the world to roll stainless steel wire rod in Fagersta, Sweden.

Our offering includes Prodec® bar that produces highly improved machinable bars. Our long legacy gives a proven track record of our technical expertise that customers benefit when dealing with us.

Our customers use stainless steel in a wide range of industrial end-uses from machined components to welding wire, forging applications, springs, and cold-heading applications to name a few. Many of our customers produce bars, wire rod as well as drawn wire or act as distributors in the key markets.

Marcegaglia Long Products employs approximately 650 professionals, with production in the UK, Sweden and US.

## What makes Marcegaglia Long Products unique?

- Quality, end-to-end process
- Sustainability
- Product portfolio and technical leadership
- Customer tailored products







## Production steps for Stainless Steel Long Products

SMACC meltshop



ASR wire rod mill



SSB bar finishing mill

Production starts in the steel meltshop in Sheffield UK, where we produce semi-finished products: slabs as well as continuously cast billets and blooms. Our own downstream operations in Sheffield, UK use billet feedstock material for producing stainless steel wire rod and cold drawn bars. Our hire-work partners in UK produce peeled bars which are finished at the SSB finishing facility.

Fagersta Stainless in Sweden is specialized in stainless steel wire rod and drawn wire.

Richburg stainless steel bar operation is located in South Carolina, US. Their feedstock material are mainly originated from UK meltshop.

Billets are rolled at hire-work partner and finished in the Richburg facility.



Fagersta Stainless wire rod and drawn wire mill



Richburg bar finishing mill

#### STEEL MELTING SHOP WIRE ROD PRODUCTION









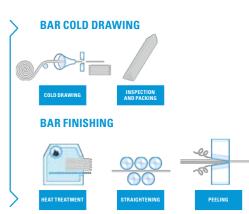






**WIRE DRAWING** 










**BAR HOT ROLLING** 





### **Applications**

### Typical applications for Marcegaglia stainless long products

- Shafts, valves, fittings, and components
- Seamless tubes, flange
- Wire, springs, bolts, and fasteners
- Forgings

#### Typical industry sectors that use Marcegaglia stainless long products

- Chemical and petrochemical processing
- Oil and gas
- Pulp and paper
- Automotive and aerospace
- Machinery and electrical
- Food and beverage
- Construction













## Our products

#### Semi-finished products



Continuously cast slabs



Continuously cast billets



Continuously cast blooms

#### Rebar



Rebar coils



Rebar lengths

#### Bars



Round



Hexagon



Square

#### Wire rods



Wire rod coils



rawn wires

18 Marcegaglia Specialties





### Marcegaglia Stainless Sheffield -SMACC Meltshop

Marcegaglia Stainless Sheffield produces consistently high quality billets, blooms and slabs in an industry-leading variety of shapes and grades for use in forging, rolling and further processing.

We also offer billets and blooms in Prodec® enhanced machinability grades for use in downstream applications where high efficiency machining is important.

Marcegaglia Stainless Sheffield has years of experience supplying quality critical industries and understanding customer requirements.

#### Key benefits

- European melt in Austenitic, Ferritic, Duplex and Precipitation hardening grades, including Prodec® for improved machinability properties
- Exceptional range of semi-finished products, also in tailored chemical compositions
- Stainless steel production for over a century
- Low Carbon footprint
- Consistent products
- Good overall cost of quality
- Easy to do Business with

Marcegaglia's SMACC operation in Sheffield represents both a proud legacy and a clear vision. Committed to being the leader in stainless steel long products, SMACC produces continuously cast semi-finished stainless steel to the most demanding customer applications.

With a proud tradition of steelmaking – the world's first martensitic stainless steel was invented here more than 100 years ago – Sheffield is home to SMACC (Stainless Melting and Continuous Casting), wire rod mill ASR (Alloy Steel Rods) and bar finishing facility SSB (Sheffield Stainless Bar).

SMACC produces semi-finished products: slabs, blooms and billets in an extremely wide selection of grades and an industry-leading range of shapes and sizes, including our 300 mm slab.

The exceptional flexibility of our meltshop means we can quickly adjust production schedules to provide flexible lead times.

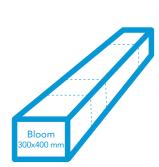
Continuously cast billets and blooms are typically used as feedstock for rolling wire rod or bar and can be used in certain forging applications. Continuously cast slabs are typically hot and cold rolled into coil and sheet plate or used in the forging industry.

Marcegaglia Stainless Sheffield has been producing stainless steel for more than a century. Our legacy of innovation and quality means that we have the right product for every application.

Contact sales at smacc.sales@stainless-marcegaglia.com

### Continuously cast billets and blooms

Continuously cast billets and blooms are typically used as feedstock for rolling wire rod or bar and can be used in certain forging applications. We provide a wide range of ferritic, austenitic, duplex, heat resistant, and precipitation hardening stainless steels with consistently high quality and delivery reliability.


#### **Benefits**

- Consistent surface, center line, and cast quality
- Expert technical support for customer processing
- Industry-leading variety of grades (including tailored grades)
- Full product traceability
- Reliable delivery performance

#### **Applications**

- Rerolling into billet, bar, and wire rod
- Forging applications

#### >10% yield benefit by using blooms in forging





Forging head loss

#### Using bloom:

- Cut precise lengths to minimize wastage
- Optimize length of bloom to your needs

#### Using ingot:

- Removing head and tail results in waste
- Tapered sides require more processing

#### Continuously cast billet

Billets can be supplied in the ground or unground condition.



| Cross-section |           | Length |       |  |  |  |  |  |
|---------------|-----------|--------|-------|--|--|--|--|--|
| mm            | in        | m      | ft    |  |  |  |  |  |
| 127 x 127*    | 5 x 5     | 3.8–12 | 12–39 |  |  |  |  |  |
| 140 x 140     | 5.5 x 5.5 | 3.8–12 | 12–39 |  |  |  |  |  |
| 150 x 150     | 5.9 x 5.9 | 3.8–12 | 12–39 |  |  |  |  |  |
| 180 x 180     | 7 x 7     | 3.8–12 | 12–39 |  |  |  |  |  |
| 200 x 200*    | 7.9 x 7.9 | 3.8–12 | 12–39 |  |  |  |  |  |

#### Continuously cast bloom

Blooms are delivered in the unground condition. Continuously cast blooms can replace ingots in certain forging applications.



| Cross-section |             | Length |      |  |  |  |  |  |  |
|---------------|-------------|--------|------|--|--|--|--|--|--|
| mm            | in          | m      | ft   |  |  |  |  |  |  |
| 300 x 400     | 12 x 16     | 2–12   | 7–39 |  |  |  |  |  |  |
| 260 x 462     | 10.2 x 18.2 | 2–12   | 7-39 |  |  |  |  |  |  |

### Continuously cast slabs

Continuously cast slabs are typically hot and cold rolled into coil and sheet plate or used in the forging industry. We provide a wide range of ferritic, austenitic, duplex, heat resistant, and precipitation hardening stainless steels with consistently high quality and delivery reliability.

#### **Benefits**

- Consistent surface, center line, and cast quality
- Expert support for processing
- 300 mm slab reduces material wastage and costs while forging
- Reliable delivery performance

#### **Applications**

- · Rerolling into plate and coil
- Certain forging applications

| Thickness |    | Width    |       | Length |       |  |  |  |  |
|-----------|----|----------|-------|--------|-------|--|--|--|--|
| mm        | in | mm       | in    | m      | ft    |  |  |  |  |
| 170       | 7  | 960–1575 | 38–62 | 4–12   | 13–39 |  |  |  |  |
| 200       | 8  | 960–1575 | 38-62 | 4–12   | 13–39 |  |  |  |  |
| 300       | 12 | 700–1575 | 28-62 | 3–6.6  | 11–22 |  |  |  |  |

#### Continuously cast slab

Slabs can be delivered in the ground or unground condition with a maximum weight of 30 tonnes.





## An industry-leading range of grades

We produce our semi-finished stainless steel long products in a wide variety of grades.

Contact sales at smacc.sales@stainless-marcegaglia.com

|                 |                          |                  |                  | Typical chemical composition, % by mass |                |      |              |              |           |      |              |
|-----------------|--------------------------|------------------|------------------|-----------------------------------------|----------------|------|--------------|--------------|-----------|------|--------------|
|                 |                          |                  |                  |                                         |                |      |              |              |           |      |              |
| Grade<br>family | Marcegaglia<br>name      | EN               | ТҮРЕ             | UNS                                     | A182           | С    | Cr           | Ni           | Мо        | N    | Others       |
| F               | 410S/4000                | 1.4000           | 410S             | S41008                                  | -              | 0.03 | 12.5         | _            | _         | -    | _            |
| F               | 430/4016                 | 1.4016           | 430              | S43000                                  | F 430          | 0.05 | 16.2         | _            | _         | _    | _            |
| F               | 430F/4105                | 1.4105           | 430F             | S43020                                  | F 430          | 0.08 | 16.5         | -            | -         | _    | S            |
| F               | 4511                     | 1.4511           | 430Nb/430Cb      | -                                       | -              | 0.02 | 16.2         | -            | -         | _    | Nb           |
| Α               | 304/4301                 | 1.4301           | 304              | S30400                                  | F 304          | 0.04 | 18.1         | 8.1          | -         | -    | _            |
| Α               | 305/4303                 | 1.4303           | 305              | S30500                                  | -              | 0.04 | 17.7         | 12.5         | -         | -    | -            |
| Α               | Prodec® 303/4305         | 1.4305           | 303              | S30300                                  | -              | 0.05 | 17.2         | 8.1          | -         | -    | 0.35         |
| Α               | 304L/4306                | 1.4306           | 304L             | S30403                                  | -              | 0.02 | 18.2         | 10.1         | -         | -    | -            |
| Α               | 304L/4307                | 1.4307           | 304L             | S30403                                  | F 304L         | 0.02 | 18.1         | 8.1          | -         | -    | -            |
| Α               | Prodec® 304L/4307        | 1.4307           | 304L             | S30403                                  | -              | 0.02 | 18.1         | 8.1          | -         | -    | -            |
| Α               | 301/4310                 | 1.4310           | 301              | S30100                                  | -              | 0.10 | 17.0         | 7.0          | -         | -    | -            |
| Α               | 304LN/4311               | 1.4311           | 304LN            | S30453                                  | F 304LN        | 0.02 | 18.5         | 9.2          | -         | 0.14 | -            |
| Α               | 308L/4316                | 1.4316           | 308              | S30800                                  | -              | 0.05 | 19.5         | 10.0         | -         | -    | -            |
| Α               | 201/4372                 | 1.4372           | 201              | S20100                                  | -              | 0.05 | 17.0         | 4.0          | -         | 0.02 | 7Mn          |
| Α               | 316/4401                 | 1.4401           | 316              | S31600                                  | F 316          | 0.04 | 17.2         | 10.1         | 2.1       | -    | -            |
| Α               | 316L/4404                | 1.4404           | 316L             | S31603                                  | F 316L         | 0.02 | 17.2         | 10.1         | 2.1       | -    | -            |
| Α               | Prodec® 316L/4404        | 1.4404           | 316L             | S31603                                  | -              | 0.02 | 17.2         | 10.1         | 2.1       | -    | -            |
| Α               | 316L/4432                | 1.4432           | 316L             | S31600                                  | F 316L         | 0.02 | 16.9         | 10.7         | 2.6       | -    | -            |
| Α               | 316/4435                 | 1.4435           | 316L             | -                                       | -              | 0.02 | 17.3         | 12.6         | 2.6       | -    | -            |
| Α               | 316L/4436                | 1.4436           | 316              |                                         | F 316          | 0.04 | 16.9         | 10.7         | 2.6       | -    | -            |
| Α               | 317L                     | 1.4438           | 317L             | S31703                                  | F 317L         | 0.02 | 18.2         | 13.7         | 3.1       | -    | -            |
| Α               | 317LM                    | -                | 317LM            | S31725                                  | F 47           | 0.03 | 19.0         | 15.0         | 4.5       | -    | -            |
| Α               | 904L                     | 1.4539           | 904L             | N08904                                  | F 904L         | 0.01 | 19.8         | 24.2         | 4.3       | -    | 1.4Cu        |
| Α               | 321/4541                 | 1.4541           | 321              | S32100                                  | -              | 0.04 | 17.3         | 9.1          | -         | -    | Ti           |
| A               | 4547                     | 1.4547           | -                | S31254                                  | F 44           | 0.01 | 20.0         | 18.0         | 6.1       | 0.2  | Cu           |
| A               | 347/4550                 | 1.4550           | 347              | S34700                                  | F 347          | 0.05 | 17.5         | 9.5          | -         | -    | Nb           |
| A               | 304Cu/4567               | 1.4567           | (304Cu)          | S30430                                  | -<br>F 24 / T: | 0.01 | 17.7         | 9.7          | -         | _    | 3Cu          |
| A               | 316Ti/4571<br>316Cu/4578 | 1.4571<br>1.4578 | 316Ti<br>(316Cu) | S31635<br>-                             | F 316Ti<br>–   | 0.04 | 16.8<br>16.9 | 10.9<br>10.7 | 2.1       | _    | Ti<br>Cu     |
| A               | 4828                     | 1.4828           | (316Cu)<br>-     |                                         | _              | 0.02 | 19.3         | 11.2         | Z. I<br>– | _    | Si           |
| A               | 309/4829                 | 1.4829           | 309              | S30900                                  | _              | 0.04 | 23.5         | 13.0         | _         | _    |              |
| A               | 309S/4833                | 1.4833           | 309S             | S30700<br>S30908                        | _              | 0.05 | 22.3         | 12.3         | _         | _    | _            |
| A               | 253MA                    | 1.4835           | -                | S30700                                  | F 45           | 0.00 | 21.0         | 11.0         |           | 0.17 | Si, Ce       |
| A               | 314/4841                 | 1.4841           | 314              | S31400                                  | -              | 0.06 | 24.3         | 19.2         | _         | -    | Si           |
| A               | 310S/4845                | 1.4845           | 310S             | S31008                                  | F 310          | 0.05 | 25.5         | 19.1         | _         | _    | _            |
| A               | 321H/4878                | 1.4878           | 321H             | S32109                                  | F 321H         | 0.05 | 17.3         | 9.1          | _         | _    | Ti           |
| A               | 304H/4948                | 1.4948           | 304H             | S30409                                  | F 304H         | 0.05 | 18.1         | 8.3          | -         | -    | _            |
| D               | 4162                     | 1.4162           | -                | S32101                                  | -              | 0.03 | 21.5         | 1.5          | 0.3       | 0.22 | 5Mn, Cu      |
| D               | 2209                     | -                | _                | S39209                                  | -              | 0.03 | 22.0         | 8.0          | 3.0       | 0.15 | _            |
| D               | 2205                     | 1.4462           | _                | S32205                                  | F 60           | 0.02 | 22.4         | 5.7          | 3.1       | 0.17 | -            |
| D               | 2304                     | 1.4362           | -                | S32304                                  | F 68           | 0.02 | 23.0         | 4.8          | 0.3       | 0.1  | Cu           |
| D               | 2507                     | 1.4410           | -                | S32750                                  | F 53           | 0.02 | 25.0         | 7.0          | 4.0       | 0.27 | -            |
| D               | 4460                     | 1.4460           | -                | S32950                                  | F 52           | 0.02 | 25.2         | 5.6          | 1.4       | 0.09 | _            |
| D               | 3RE60                    |                  | -                | S31500                                  | -              | 0.02 | 18.5         | 5.0          | 2.7       | 0.08 | -            |
| D               | SDX 100                  | 1.4501           | _                | S32760                                  | F 55           | 0.02 | 25.4         | 6.9          | 3.8       | 0.27 | W, Cu        |
| М               | 416/4005                 | 1.4005           | 416              | S41600                                  | -              | 0.1  | 13.0         | -            | -         | -    | S            |
| М               | 410/4006                 | 1.4006           | 410              | S41000                                  | F 6a           | 0.12 | 12.0         | -            | -         | -    | -            |
| М               | 420/4021                 | 1.4021           | 420              | S42000                                  | -              | 0.2  | 13.0         | -            | -         | -    | -            |
| М               | 420/4028                 | 1.4028           | 420              | S42000                                  | -              | 0.3  | 12.5         | -            | -         | -    | -            |
| М               | 431/4057                 | 1.4057           | 431              | S43100                                  | -              | 0.2  | 16.0         | 1.75         | -         | -    | _            |
| М               | 4313                     | 1.4313           | -                | S41500                                  | F 6NM          | 0.03 | 12.5         | 4.1          | -         | 0.6  | -            |
| М               | 248SV/4418               | 1.4418           | -                | -                                       | -              | 0.03 | 16.0         | 5.0          | 1.0       | -    | -            |
| PH              | Prodec® 17-4PH           | 1.4542           | 630              | S17400                                  | -              | 0.02 | 16.3         | 4.7          | -         | -    | Nb, 3.5Cu    |
| PH              | 17-4PH                   | 1.4542           | 630              | S17400                                  | -              | 0.02 | 15.5         | 4.8          | -         | -    | Nb, Cu       |
| PH              | 17-7PH                   | 1.4568           | 631              | S17700                                  | -              | 0.08 | 17.0         | 7.0          | -         | -    | Al           |
| _               | F91/4903                 | 1.4903           | -                | K90901                                  | F 91           | 0.08 | 9.0          | -            | 1.0       | -    | Nb, V        |
| _               | F92/4901                 | 1.4901           | -                | K92460                                  | F 92           | 0.08 | 9.0          | -            | 0.45      | -    | 1.75W, Nb, V |

 $F = Ferritic, A = Austenitic, D = Duplex, M = Martensitic, PH = Precipitation Hardening \\ Chemical compositions given as % by mass. Table uses Marcegaglia typical values.$ 

 $For full\ grade\ of fering\ per\ product\ type\ the\ required\ standard\ will\ be\ fully\ met\ as\ specified\ in\ the\ order.$ 

Prodec® grades are only available in the form of long products.





### Ensuring quality with end-to-end production

#### **SMACC**



Marcegaglia stainless steel contains a very high proportion of recycled materials.



Casting

We use a combination casting machine for slab or bloom, or a six-strand billet casting machine.



Electric arc furnace

The 130 tonne, 90 MVA furnace melts the stainless scrap into a liquid feedstock.



AOD

In the argon oxygen decarburization vessel the melt is decarburized and chemical composition adjusted.



Ladle arc furnace

In the LAF, final chemical composition and temperature are adjusted and homogenized.



Grinding

If required, top and bottom surface grinding is applied to slabs, and full or corner grinding to billets.



Labelling & inspection

Metal tags are attached to each cast item with a unique identity to allow full product traceability.



Packing and shipping

Items may receive additional customerspecific marking before being packed and shipped.

#### High quality according to international standards

Our manufacturing programs are supported by in-house product inspection and testing, and the extensive experience of our technical team. SMACC is accredited to recognized international standards, including:

- ISO 9001:2015
- ISO 14001:2015
- ISO 45001:2018
- ABS Foundry Approval
- AD 2000 MERKBLATT W0
- DNV rules for classification DNV-CP-0242
  - Semi-finished steel products
- Lloyd's Register Approved Manufacturer of Steel Plates, Strip, Sections & Bars
- PED 2014/68/EU





## ASR wire rod mill UK

Sheffield Stainless ASR Rod mill started operations

in Sheffield in 1965, a short distance from the meltshop SMACC where billet feedstock is produced for our wire rod production. The manufacturing program consists of a wide range of grades and sizes of which significant proportion are "niche" products. ASR produces wire rod in a large range of sizes suitable for downstream bar and wire production. Rebar is produced in duplex grades when required in construction projects where high integrity, long life solutions are required. ASR can provide shaped wire rod in hexagon and square forms. Key end-use applications include springs, fasteners, welding wire, machined components and bridge structures with rebar. ASR looks to develop close partnerships with its customers to offer technical solutions to assist them in become the leaders in their field and thus giving them a competitive advantage.

#### Key benefits

- European melt
- Integrated production
- Low Carbon footprint
- Consistent products
- Good overall cost of quality

The customer is always in focus, so that we can fulfill each customers unique needs. Our goal is to be recognized in the market as the most responsive specialist rod supplier with industry-leading customer service backed by a flexible, high quality manufacturing program.







### Wire rod dimensions







To get best possible properties for bar wire rod, following parameters are important:

- Tight chemistry control for consistent properties
- Mechanical properties and deformation hardening
- Corrosion properties
- Surface finish
- Dimension tolerances

#### Conditions

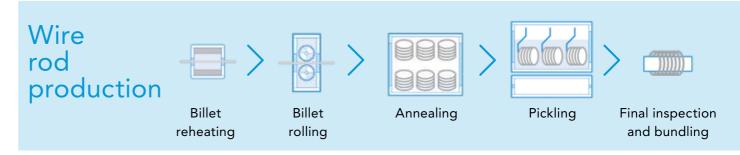


Batch Annealed (ASTM 4-6)

#### Grades

- Austenitic
- Duplex
- PH
- Nickel alloys

#### Heat sizes


Depending on grade, our heat sizes are:

- Appr. 60 tonnes (132 000 lbs)
- Appr. 120 tonnes (265 000 lbs)

#### Coil sizes and weights

| Dimensions                                          | Inside<br>diameter<br>(min) | Outside diameter (max) | Coil weight                          |
|-----------------------------------------------------|-----------------------------|------------------------|--------------------------------------|
| 5.0–9.5 mm<br>Round                                 | 850 mm                      | 1.250 mm               | 750–1.000 kg<br>(grade<br>dependent) |
| 10.0–27 mm<br>Round,<br>Hexagon,<br>Square<br>Rebar | 980 mm                      | 1.320 mm               | 750–1.000 kg<br>(grade<br>dependent) |

#### Production platform and certificates



34 Marcegaglia Specialties

Marcegaglia Specialties 35

ASR wire rod are suitable for a variety of applications. These include the likes of flanges, valves, fittings, couplings, seals, shafts, blots and nuts, pumps shafts and hydraulic cylinder parts.

We have a wide range of grades used for bar, but can also make customized chemistries to meet your unique needs. Below you can see a selection of grades within our standard range:

|                 |                              |                  |                    | AS        | TM                 |     | Турі | cal che | mical co | mposit | ion, % | by mass    |                 | Ар      | plicat  | ion             |            |       |
|-----------------|------------------------------|------------------|--------------------|-----------|--------------------|-----|------|---------|----------|--------|--------|------------|-----------------|---------|---------|-----------------|------------|-------|
| Grade<br>family | Marcegaglia<br>name          | ASR<br>Melt Code | EN                 | ТҮРЕ      | UNS                | PRE | С    | Cr      | Ni       | Мо     | N      | Others     | Cold<br>heading | Springs | Welding | High<br>temper. | Bright bar | Rebar |
| PH              | 17-4PH                       | 174XC            | 1.4542             | 630       | S17400             | 17  | 0.01 | 15.2    | 4.6      | 0.2    | 0.03   | 3.2 Cu, Nb |                 |         |         |                 | Х          |       |
| PH              | 17-7PH                       | 177XA            | 1.4568             | 631       | S17700             | 18  | 0.08 | 16.7    | 7.6      | 0.2    | 0.02   | 0.9 Al     |                 | Х       |         |                 |            |       |
| D               | Lean duplex 4162             | 210XB            | 1.4162             |           | S32101             | 26  | 0.02 | 21.4    | 1.5      | 0.2    | 0.22   | 5.0 Mn     |                 |         |         |                 | Х          |       |
| D               | Duplex 2304                  | 234XB            | 1.4362             |           | S32304             | 26  | 0.02 | 22.3    | 4.8      | 0.3    | 0.13   |            |                 |         |         |                 |            | Х     |
| Α               | 253 MA                       | 253XA            | 1.4835             |           | S30815             | 24  | 0.07 | 21.0    | 10.3     | 0.1    | 0.17   |            |                 |         |         | Χ               |            |       |
| Α               | 254 SMO                      | 254XA            | 1.4547             |           | S31254             | 43  | 0.01 | 20.1    | 18.0     | 6.1    | 0.20   | 3.0 Mn     |                 |         |         | Х               |            |       |
| Α               | 302/4310                     | 302XB            | 1.4310             | 302H      | S30200             | 19  | 0.08 | 17.5    | 8.1      | 0.4    | 0.04   |            |                 | Х       |         |                 |            |       |
| Α               | 302/4310                     | 302XD            | 1.4310             | 302       | S30200             | 19  | 0.05 | 17.8    | 8.1      | 0.3    | 0.04   |            |                 | Х       |         |                 |            |       |
| Α               | Prodec® 303/4305             | 303PR            | 1.4305             | 303       | S30300             | 17  | 0.05 | 17.2    | 8.2      | 0.5    | 0.04   | 0.30 S     |                 |         |         |                 | Х          |       |
| А               | 303/4305                     | 303LS            | 1.4305             | 303       | S30300             | 17  | 0.05 | 17.2    | 8.2      | 0.4    | 0.05   | 0.28 S     |                 |         |         |                 | Х          |       |
| А               | Prodec® 303/4305<br>(Shapes) | 303PS            | 1.4305             | 303       | S30300             | 17  | 0.05 | 17.2    | 8.7      | 0.5    | 0.03   | 0.30 S     |                 |         |         |                 | Х          |       |
| Α               | 303/4305 (Shapes)            | 303XI            | 1.4305             | 303       | S30300             | 17  | 0.05 | 17.2    | 8.7      | 0.4    | 0.03   | 0.30 S     |                 |         |         |                 | Х          |       |
| Α               | Prodec® 304L/4307            | 304PR            | 1.4307             | 304L      | S30403             | 18  | 0.02 | 18.2    | 8.1      | 0.4    | 0.07   |            |                 |         |         |                 | Х          |       |
| Α               | 304L/4307                    | 304UA            | 1.4307             | 304L      | S30403             | 18  | 0.02 | 18.1    | 8.1      | 0.4    | 0.07   |            |                 |         |         |                 | Х          |       |
| Α               | 304L/4306                    | 304UD            | 1.4306             | 304L      | S30403             | 18  | 0.02 | 18.5    | 10.1     | 0.3    | 0.03   |            |                 |         |         |                 | Х          |       |
| Α               | 304/4301                     | 304UE            | 1.4301             | 304       | S30400             | 20  | 0.05 | 18.2    | 9.1      | 0.3    | 0.03   |            |                 |         |         |                 | Х          |       |
| А               | 304L/4307                    | 304UF            | 1.4307             | 304L      | S30403             | 20  | 0.02 | 18.2    | 8.1      | 0.4    | 0.06   |            |                 |         |         |                 | Х          |       |
| Α               | 304L/4307                    | 304UN            | 1.4307             | 304L      | S30403             | 20  | 0.02 | 18.2    | 8.2      | 0.4    | 0.06   |            |                 |         |         |                 | Х          |       |
| Α               | 304L/4307                    | 304XR            | 1.4307             | 304L      | S30403             | 20  | 0.02 | 18.3    | 9.1      | 0.4    | 0.04   |            |                 |         |         |                 | Х          |       |
| А               | 304/4310                     | 304XY            | 1.4310 /<br>1.4301 | 304 / 302 | S30400 /<br>S30200 | 20  | 0.07 | 18.3    | 8.3      | 0.3    | 0.04   |            |                 |         |         |                 | Х          |       |
| Α               | 304LN                        | 304XZ            | 1.4311             | 304LN     | S30453             | 21  | 0.02 | 17.9    | 8.6      | 0.3    | 0.14   |            |                 |         |         |                 | Х          |       |
| Α               | 305                          | 305XA            | 1.4303             | 305       | S30500             | 20  | 0.02 | 18.3    | 11.3     | 0.3    | 0.04   |            |                 |         |         |                 | Х          |       |
| Α               | 307                          | 307XA            | 1.4370             | 307       |                    | 20  | 0.07 | 18.0    | 7.9      | 0.2    | 0.05   | 7 Mn       |                 |         | Х       |                 |            |       |
| Α               | 307                          | 307XF            | 1.4370             | 307       |                    | 20  | 0.05 | 17.8    | 8.1      | 0.2    | 0.05   | 7 Mn       |                 |         | Х       |                 |            |       |
| Α               | 308LSi/4316                  | 308XJ            | 1.4316             | 308L      | S30888             | 21  | 0.01 | 19.9    | 10.6     | 0.1    | 0.06   | 0.8 Si     |                 |         | Х       |                 |            |       |
| Α               | 308L/4316                    | 308XL            | 1.4316             | 308L      | S30883             | 21  | 0.01 | 19.7    | 10.1     | 0.3    | 0.06   | 0.4 Si     |                 |         | Х       |                 |            |       |
| Α               | 309LSi/4332                  | 309XA            | 1.4332             | 309L      | S30988             | 25  | 0.01 | 23.3    | 13.8     | 0.1    | 0.06   | 0.8 Si     |                 |         | Х       |                 |            |       |

|                 |                     |                  |        | AS    | TM     | Typical chemical composition, % by mass |      |      | Application |     |      |        |                 |         |         |                 |            |       |
|-----------------|---------------------|------------------|--------|-------|--------|-----------------------------------------|------|------|-------------|-----|------|--------|-----------------|---------|---------|-----------------|------------|-------|
| Grade<br>family | Marcegaglia<br>name | ASR<br>Melt Code | EN     | TYPE  | UNS    | PRE                                     | С    | Cr   | Ni          | Мо  | N    | Others | Cold<br>heading | Springs | Welding | High<br>temper. | Bright bar | Rebar |
| Α               | 309L/4332           | 309XC            | 1.4332 | 309L  | S30983 | 25                                      | 0.01 | 23.4 | 13.6        | 0.1 | 0.05 | 0.4 Si |                 |         | Х       |                 |            |       |
| Α               | 309L/4332           | 309XH            | 1.4332 | 309L  | S30983 | 25                                      | 0.06 | 22.4 | 12.2        | 0.3 | 0.07 |        |                 |         | Х       |                 |            |       |
| Α               | 310S/4845           | 310XC            | 1.4845 | 310S  | S31008 | 26                                      | 0.05 | 24.8 | 19.1        | 0.2 | 0.04 |        |                 |         |         | Х               |            |       |
| Α               | 314/4841            | 314XC            | 1.4841 | 314   | S31400 | 25                                      | 0.04 | 23.2 | 19.1        | 0.3 | 0.04 | 2.2 Si |                 |         |         | Χ               |            |       |
| Α               | 314/4841            | 314XF            | 1.4841 |       |        | 25                                      | 0.02 | 24.2 | 20.6        | 0.2 | 0.04 | 2.2 Si |                 |         |         | Х               |            |       |
| Α               | Prodec® 316L/4404   | 316PR            | 1.4404 | 316L  | S31603 | 24                                      | 0.02 | 16.7 | 10.1        | 2.1 | 0.05 |        |                 |         |         |                 | Х          |       |
| Α               | 316L/4404           | 316UI            | 1.4404 | 316L  | S31603 | 24                                      | 0.01 | 17.1 | 11.1        | 2.1 | 0.03 |        |                 |         |         |                 | Х          |       |
| Α               | 316L/4404           | 316UK            | 1.4404 | 316L  | S31603 | 24                                      | 0.02 | 16.8 | 11.1        | 2.1 | 0.03 |        |                 |         |         |                 | Х          |       |
| Α               | 316L/4404           | 316UL            | 1.4404 | 316L  | S31603 | 25                                      | 0.01 | 17.2 | 12.1        | 2.1 | 0.02 |        |                 |         |         |                 | Х          |       |
| Α               | 316L/4404           | 316UM            | 1.4404 | 316L  | S31603 | 24                                      | 0.02 | 16.7 | 10.1        | 2.1 | 0.03 |        |                 |         |         |                 | Х          |       |
| А               | 316L/4432           | 316UN            | 1.4432 | 316L  | S31683 | 24                                      | 0.01 | 18.4 | 11.6        | 2.2 | 0.07 |        |                 |         |         |                 | Х          |       |
| Α               | 316L/4432           | 316XE            | 1.4432 |       | S31683 | 26                                      | 0.01 | 18.3 | 12.2        | 2.1 | 0.03 | 0.4 Si |                 |         | Х       |                 |            |       |
| Α               | 316L/4436           | 316XL            | 1.4436 | 316   | S31600 | 25                                      | 0.04 | 17.3 | 11.1        | 2.6 | 0.03 |        |                 |         |         |                 | Х          |       |
| Α               | 316Cu/4578          | 316XW            | 1.4578 | 316Cu | -      | 23                                      | 0.02 | 16.8 | 10.7        | 2.0 | 0.02 | 3.2 Cu | Х               |         |         |                 |            |       |
| Α               | Prodec® 316L/4404   | 316XX            | 1.4404 | 316L  | S31603 | 24                                      | 0.02 | 16.8 | 10.1        | 2.0 | 0.05 |        |                 |         |         |                 | Х          |       |
| Α               | 316Ti/4571          | 320XA            | 1.4571 | 316Ti | S31635 | 24                                      | 0.04 | 16.6 | 11.3        | 2.0 | 0.01 | Ti     |                 |         |         |                 | Х          |       |
| Α               | 316Ti/4571          | 320XD            | 1.4571 | 316Ti | S31635 | 24                                      | 0.01 | 16.8 | 10.8        | 2.1 | 0.02 | Ti     |                 |         |         |                 | Х          |       |
| Α               | 316Ti/4571          | 320XE            | 1.4571 | 316Ti | S31635 | 24                                      | 0.01 | 16.6 | 10.6        | 2.0 | 0.02 | Ti     |                 |         |         |                 | Х          |       |
| Α               | 321H                | 321XB            | 1.4878 | 321H  |        | 18                                      | 0.05 | 17.2 | 9.1         | 0.4 | 0.01 | Ti     |                 |         |         |                 | Х          |       |
| А               | 321                 | 321XG            | 1.4541 | 321   |        | 18                                      | 0.01 | 17.2 | 9.1         | 0.4 | 0.02 | Ti     |                 |         |         |                 | х          |       |
| Α               | 347                 | 347XA            | 1.4550 | 347   | S34788 | 19                                      | 0.05 | 17.3 | 9.1         | 0.3 | 0.04 | Nb     |                 |         |         |                 | Х          |       |
| Α               | 304Cu/4567          | 399XB            | 1.4567 | 304Cu | S30433 | 19                                      | 0.01 | 17.7 | 9.5         | 0.2 | 0.02 | 3.1 Cu | Х               |         |         |                 |            |       |
| Α               | 304Cu/4567          | 399XE            | 1.4567 | 304Cu | S30430 | 19                                      | 0.01 | 17.7 | 9.6         | 0.2 | 0.02 | 3.4 Cu | Х               |         |         |                 |            |       |
| Α               | 304Cu/4567          | 399XG            | 1.4567 | 304Cu | S30430 | 18                                      | 0.01 | 17.3 | 8.6         | 0.2 | 0.02 | 3.6 Cu | Х               |         |         |                 |            |       |
| A-Ni            | 825                 | 825XA            | 1.4858 |       |        | 27                                      | 0.20 | 20.0 | 40.0        | 2.0 | 0.01 | 1.5 Cu |                 |         |         | Х               |            |       |
| А               | 904L                | 904XA            | 1.4539 | 904L  | N08904 | 34                                      | 0.01 | 19.9 | 24.2        | 4.3 | 0.05 | 1.5 Cu |                 |         |         | Х               |            |       |

Grade families: F = ferritic, A = austenitic, PH = precipitation hardening



Contact sales at sales.asr@stainless-marcegaglia.com

## Ensuring quality with end-to-end production



Melting shop Consistently produced high quality semis are made at SMACC in 130-tonne melts.



Billet feedstock
The majority of the feedstock comes from our own melting shop.



Reheating furnace
Accurately controlled,
two-stage reheating
minimizes surface
scaling.



A highly responsive digital control system tracks the rod through the mill to ensure quality.



Coil forming
Wire rod of up to 10 mm
is coiled on a laying head.
Rod in larger diameters is
coiled in garret coilers.



Annealing
The rotary annealing
furnace softens the rod to
increase its ductility for
further processing.



Pickling
Scale is removed from
the hot rolled surface
using salt bath and acid
treatment.



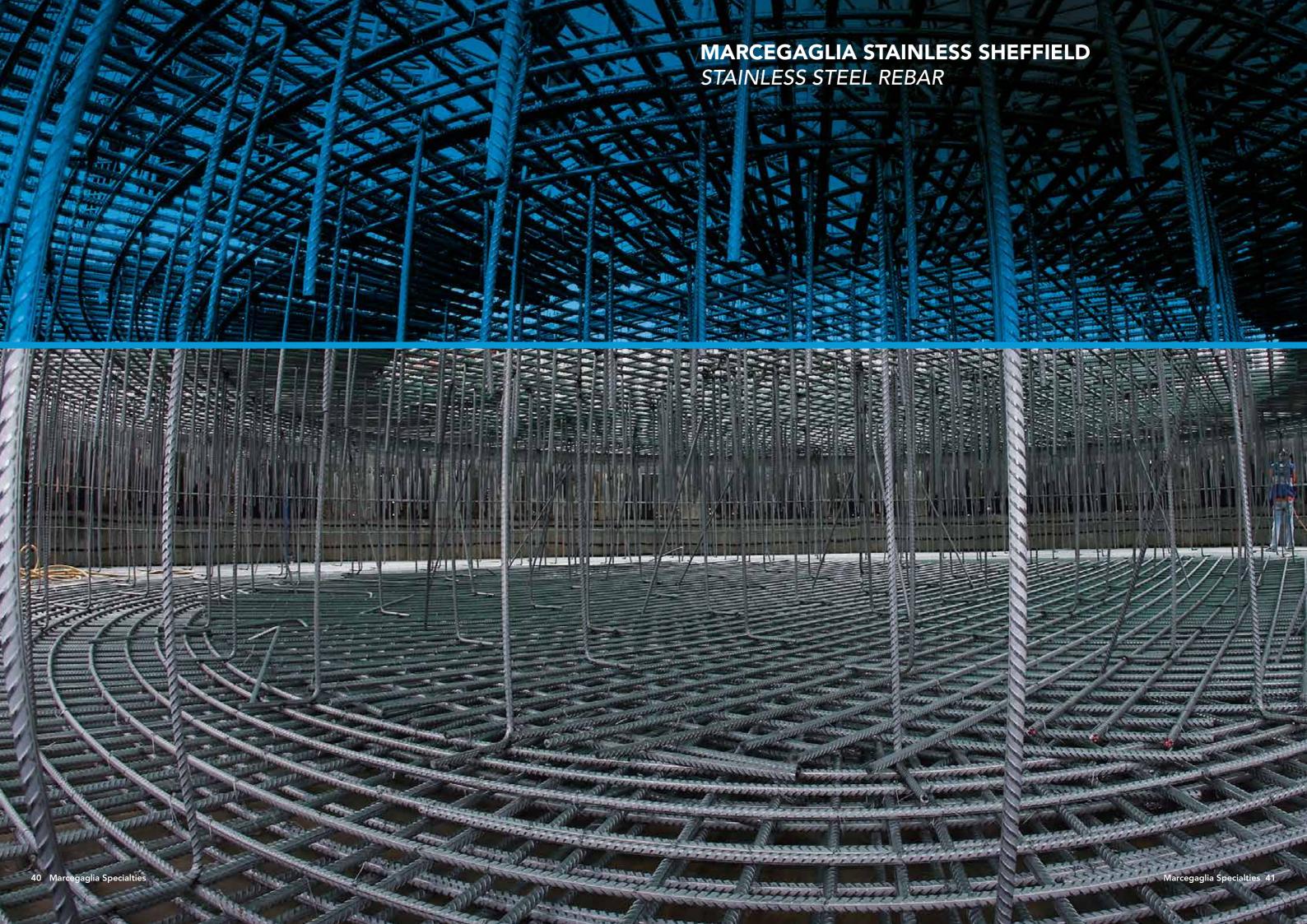
Testing
Samples from production
stages are tested for
surface defects, grain
size, and tensile strength.

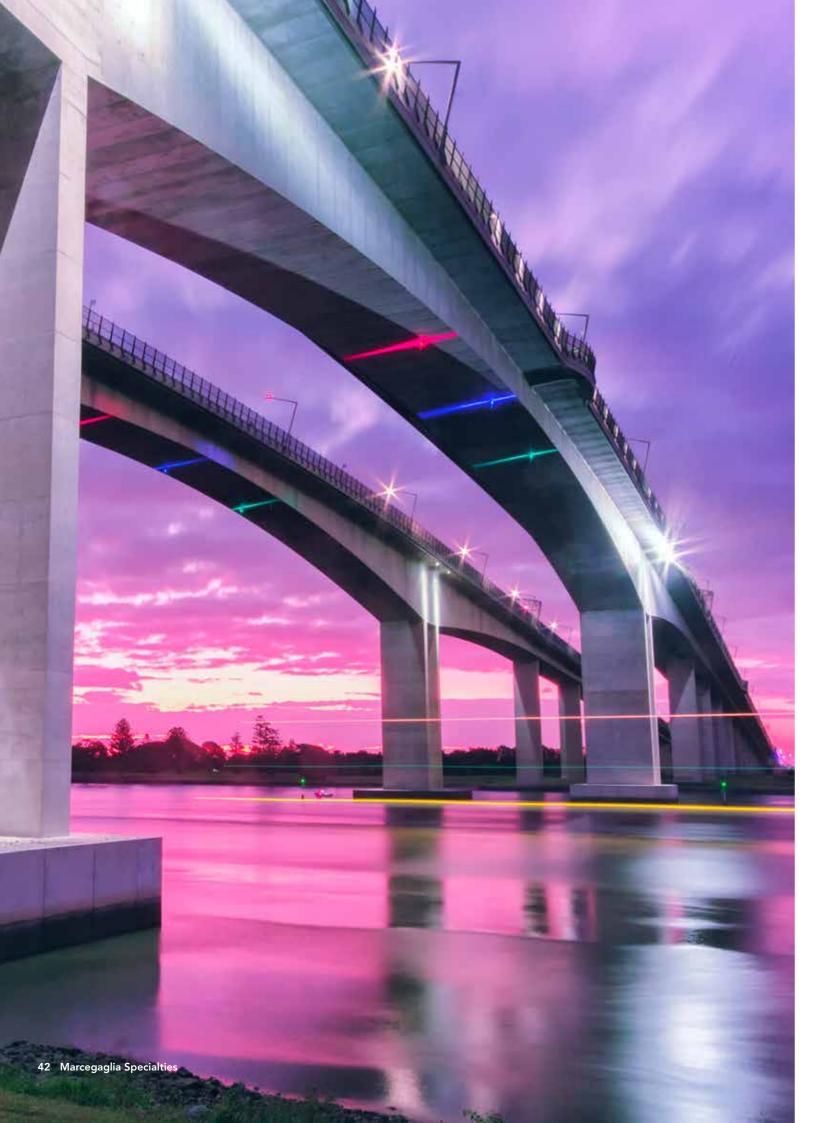
#### ASR wire rod mill

#### Quality assurances

Our manufacturing programme is supported by an in-house product inspection and testing programme in addition to a technical team with extensive experience. Our rod and stainless rebar production is accredited to recognized international standards, including:

- . ISO 9001
- ISO 14001
- ISO 45001
- AD 2000 MERKBLATT W 0 / TRD 100


#### Rebar product assurance


Approval is gained by a manufacturer only after demonstrating that their quality systems meet the requirements of ISO 9001, and the additional product-specific CARES requirements. An extensive programme of witness and independent testing also has to be passed, with independent testing being conducted by UKAS accredited laboratories to ensure integrity and competence.

- CARES Product Type Approval to BS 6744
- CARES Product Type Approval to BS 8666
- Certificate of conformity of the factory production control 1608 CPR P222



38 Marcegaglia Specialties





## Stainless steel rebar

Marcegaglia offers an extensive range of stainless steel rebar with excellent availability and unmatched service.

Our fully integrated capabilities, from melting to testing, enable us to produce stainless rebar with industry-leading consistency and delivery performance.

Stainless steel rebar is produced in a wide range of dimensions and is available in coil, lengths, and bent shapes. Our offering also includes dowel bar and complementary products such as couplers. We have production site in the UK as well as strategically located stainless steel rebar stock to ensure high availability and short lead times.

#### Key benefits

- Product quality
- Delivery reliability
- Easy to deal with



Contact sales at sales.rebar@stainless-marcegaglia.com

## A long lasting and resilient material

Stainless steel rebar is mainly used in construction, for example coastal barrier walls, concrete piers, and bridges where chloride-induced corrosion is a risk. Using stainless steel rebar in these environments reduces the lifetime cost of the structure, as well as maintenance-related downtime.

There are three main cases where stainless steel is the best choice:

- When concrete is subject to the ingress of chlorides from either marine environments or de-icing salts. Stainless steel rebar can resist the initiation of corrosion with chloride concentration levels more than 10 times higher than that which carbon steel can resist.
- When concrete loses the high alkalinity that protects the carbon steel from corrosion due to carbonation. This can take more than 100 years but ultimately is inevitable, making stainless steel the ideal solution for structures requiring a very long lifespan, for example bridges, temples and monuments.

In addition, stainless steel rebar has much better ambient and low temperature energy absorption, fatigue resistance, and toughness than carbon or alloy steels, which is important in applications where there are seismic, security, and other impact resistant considerations. It also has improved stiffness and strength retention in fire compared to carbon steel.



## The complete reinforcement package

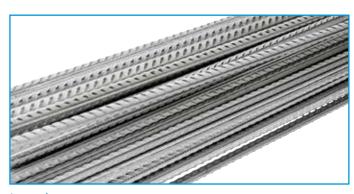
Marcegaglia stainless steel rebar is available from 6 to 25 mm. We produce rebar in several alloys including the widely used duplex 2304 as well as lean duplex 1.4162 stainless steel, which combines low nickel content with high mechanical strenght, as well as grade 500 produced according to BS 6744. We also offer a wide variety of bent shapes according to 8666:2020. Our rebar finishing facility uses the latest technology in straightening and cut and bend equipment for diameters up to 25 mm direct from our production site.

We also supply dowel bar and complementary products to offer you a complete stainless steel rebar solution for your project.



Our environmental product declaration (EPD) for stainless steel rebar helps you understand the exact environmental impacts and energy needs of our products and allows you to calculate how these affect the life cycle of your building or other structure.

## Use our stainless steel for LEED points


Marcegaglia Stainless Sheffield is a pioneer in Leadership in Energy and Environmental Design (LEED), the sustainability oriented building certification scheme that recognizes best-in-class building strategies and practices. LEED certification standards apply to buildings that achieve high energy efficiency and use sustainable materials.

The sustainable characteristics of stainless steel, such as high recycled content and long service life, are rewarded in this scheme.

We offer LEED documentation for our stainless steel rebar, meaning that designers who select our stainless steel can gain LEED points for their building.



Coil

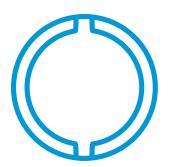


Lengths



Bent shapes




Dowel bar

### Coils and lengths

Marcegaglia stainless steel rebar is available from the UK in metric sizes 6–25 mm.

In the UK we produce rebar that has a two-sided pattern (see diagram).

Two-sided pattern



Available alloys

| Marcegaglia name   | EN     | ASTM | UNS               | Alloy type |
|--------------------|--------|------|-------------------|------------|
| Lean duplex 1.4162 | 1.4162 | -    | S32101            | D          |
| Lean duplex 4482   | 1.4482 | -    | S32001            | D          |
| Duplex 2304        | 1.4362 | _    | S32304            | D          |
| Duplex 2205        | 1.4462 | -    | S32205/<br>S31803 | D          |

D = Duplex

Note: Other alloys, sizes, and specifications may be available upon request.

Please contact the mill for specific requirements.



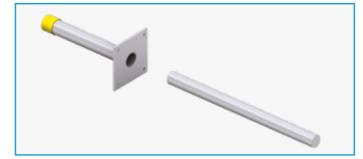
## Bent shapes and dowel bar

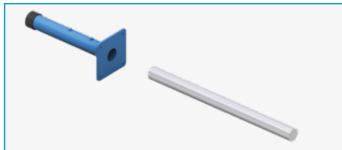
#### Bent shapes

CARES-certified BS 6744 rebar is available in bent shapes according to BS 8666:2020.

Grade 500 BS 6744:2016 stainless steel rebar can be supplied in straight lengths up to 12 m as well as cut and bent shapes in accordance with BS 8666:2020.

#### Dowel bar


Dowel bars are used to transfer shear loads across construction and movement joints in concrete.


The standard Marcegaglia dowel system is available in a wide range of diameters and lengths.

Stainless steel and durable plastic de-bonding sleeves are available with integral nail plates for easy fixing to the shuttering.

Our sales can also assist you in finding local suppliers.







## Stainless steel rebar in action



#### Gateway Bridge, Brisbane, Australia

Marcegaglia Stainless Sheffield delivered 200 tonnes of lean duplex 1.4162 stainless steel rebar for use in the most critical structures of the bridge.

To ensure a 300 year lifespan, stainless rebar was specified for the pile caps located in the splash zones of the two main river pylons of the Brisbane River. Instead of using 316L/1.4404, we recommended low-nickel lean duplex 1.4162, which offers superb price stability and is a cost-effective alternative for durable reinforced concrete structures.



#### Allt Chonoglais Bridge, Scotland

Marcegaglia delivered over 7,000 pieces of rebar in duplex 2304, a total of 67 tonnes, for refurbishing the bridge. Stainless steel rebar was specified for the areas which are at greater risk from chloride-induced reinforcement corrosion due to the application of de-icing salts during the winter months. This included the bridge deck, abutments, wing walls, and bearing plinths. The customer selected duplex 2304 rebar due to its competitive cost and exceptional chloride resistance which helps to give the bridge a 120-year lifespan.



#### Junction Värtan, Stockholm, Sweden

Marcegaglia delivered 300 tonnes of lean duplex 1.4162 stainless steel rebar for use in a major junction in a new motorway around northern Stockholm, Sweden. Roads in northern climates face particularly corrosive environments due to chlorides from de-icing salts. As the junction is meant to be largely maintenance free, stainless steel rebar in 316L/1.4404 was originally specified. Lean duplex 1.4162 stainless steel was ultimately chosen as the very low nickel content results in good price stability.



#### Coast protection scheme, Cromer, UK

Marcegaglia delivered 335 tonnes of duplex 2304 stainless steel rebar for the Cromer coast protection scheme. Cromer sea defenses have protected the area against the North Sea for over 150 years. The project includes refacing sea walls with concrete and replacing the timber groynes which protect the beach. The goal of the project is not to just maintain current defenses, but also withstand predicted sea level rises over the next 50 years.



Buddhist temple, Chounbri province, Thailand

The temple committee in Thailand in charge of the development wished to create a sacred place that would last more than 1,000 years. Marcegaglia supplied over 23,200 rebar pieces in 90 different sizes and lengths in lean duplex 1.4162 stainless steel. Marcegaglia's Rebar Finishing team managed the extremely complex delivery and was able to meet the customer's request for a very tight length tolerance. In addition, the team managed a tight schedule, achieving 100% on-time delivery.



La Sagrada Família basilica, Barcelona, Spain

Marcegaglia has supplied stainless steel for
La Sagrada Família basilica since 2013 in stainless steel
rebar, bar, machined components, and plasma-cut
plate products. The building has exceptional lifecycle
expectations and a unique design. When completed,
18 towers of La Sagrada Família will reach heights from
94 to 182 meters above ground level. Stainless steel
rebar was the first choce for the tower structures due
to its high strength, exceptional corrosion resistance,
and reduced lifecycle costs. Marcegaglia is the
single-supplier for the project, delivering products
in Marcegaglia duplex 2304 and duplex 2205 grades
in easy-to-assemble sizes and shapes.



Sheikh Jaber al-Ahmad Al-Sabah Bridge, Kuwait

Stainless steel is the ideal material for infrastructure projects in maritime environments due to its high corrosion resistance and low life-cycle costs.

Marcegaglia provided 1,600 metric tons of duplex 2304 stainless steel rebar for the Sheikh Jaber al-Ahmad Al-Sabah project in Kuwait. The 36 km long causeway project is one of the largest infrastructure projects to be constructed in the region.



Mega Reservoir project, Qatar

The Qatar mega reservoirs projects include five primary reservoir and pumping station packages with a capacity of 100 million gallons each, making them the largest reinforced concrete reservoirs in the world. Marcegaglia provided 350 metric tonnes of smooth round stainless steel dowel bar for the project. Marcegaglia 316L/4404 stainless steel dowel bars are used in expansion joints for the movement of lateral loads and to manage stress within the joint. They were selected for their high corrosion resistance.

## Ensuring quality with end-to-end production

#### From melting to bar finishing



Melting shop Consistently produced high quality semis are made at SMACC in 130-tonne melts.



Billet casting We use a combination casting machine for slab, bloom or six-strand billet casting machine.



Preheating Billets are reheated before rolling into wire rod.



A highly responsive digital control system tracks the rod through the mill to ensure quality.



Wire rod coiling Wire rod of up to 10 mm is Rebar coils are coiled on a laying a head. Rod in larger diameters is coiled in garrett coilers.



Straightening straightened before cutting to lengths to remove tension in the material.



Shape bending Rebar can be bent to a number of shapes according to customer specifications.

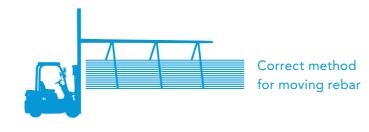


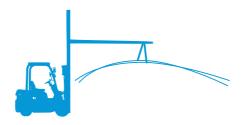
Packing Rebar shapes and lengths are carefully packed before delivery to their final destination.

#### High quality according to international standards

We offer rebar according to BS 6744 and BS 8666. Marcegaglia supplies mill test certificates with every bundle delivered and our mills are accredited to recognized international standards, including:

- ISO 9001 TÜV Nord
- CARES Certificate of Approval for production of rebar
- IGQ compliance with Regulation 305/2011/EU product type approval


### Handling stainless steel rebar


To get the best results when using stainless steel rebar, we suggest the following handling, storage, and transport guidelines:

- In general, always avoid carbon steel contamination
- Do not place stainless steel rebar directly on the ground
- Ensure that stainless steel is packed in proper packing material if transported together with carbon steel
- Do not expose stainless steel rebar to marine environments and de-icing salt prior to casting in concrete
- Pack stainless steel rebar in appropriate packing material if stored in aggressive environments
- Slings and bundling wire should be made of nylon or other materials that do not contain, or have not been in contact with, carbon steel
- Movement of long lengths of stainless steel rebar must be performed with even and sufficient support along the length of the reinforcement
- If stainless steel rebar is heated above 400 °C/750 °F, a heat tint or oxide scale may be formed that requires pickling

#### If contamination occurs:

- Clean the surface with water
- Staining can be removed by using a passivating cleaner such as Avesta Cleaner 401, available from Avesta Finishing Chemicals



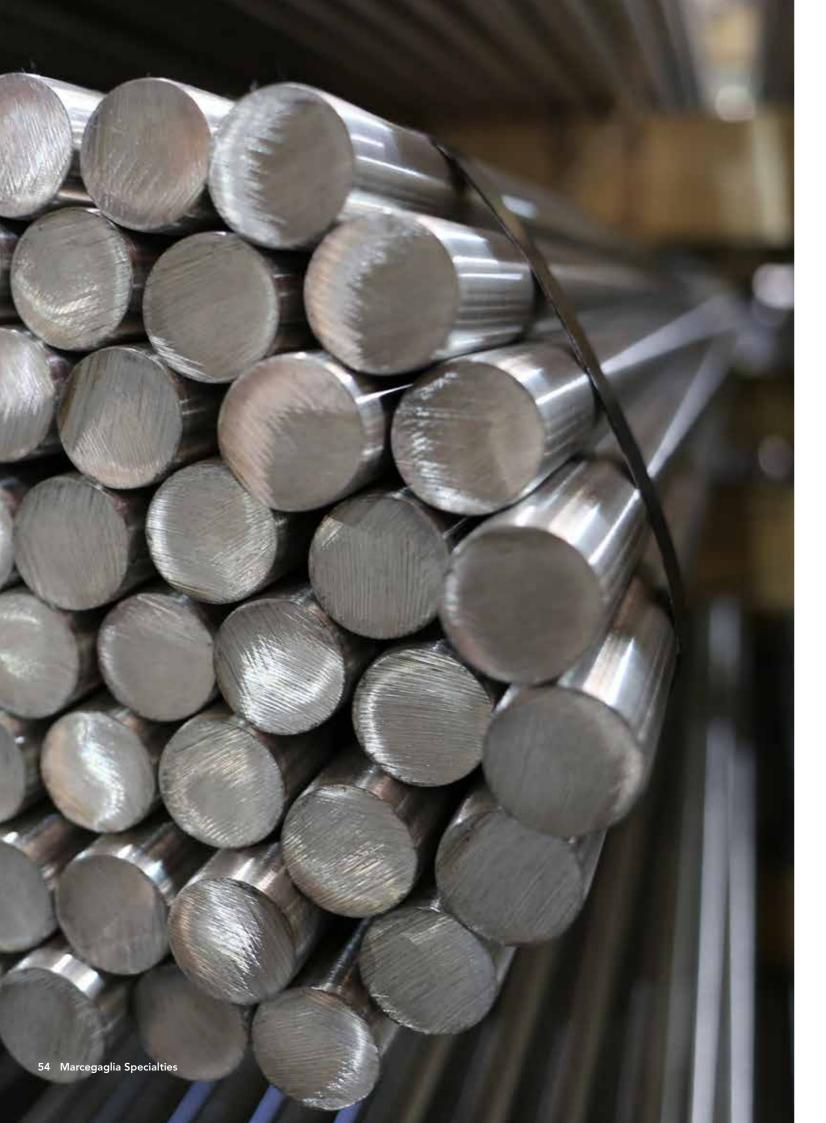


Incorrect method for moving rebar

#### Services

Marcegaglia has over 100 years of technical expertise in both production and use of stainless steel. We can offer support during materials selection, processing, and end use to help you get the most out of our materials.

We offer full-service rebar packages and work closely with you to ensure the optimal schedule for producing, finishing, and delivering rebar. We have production site in the UK, and hold strategically located rebar stock for fast delivery and materials testing needs.


Marcegaglia services can include:

- Materials selection advice
- Rebar cut to length and cut and bend
- Rebar project management
- Delivery flexibility with short lead times
- Technical support
- Training
- Long-term pricing for larger contracts

Contact sales at sales.rebar@stainless-marcegaglia.com







### Marcegaglia Stainless Sheffield high-performance bar

Marcegaglia Long Products is a global producer of high quality stainless steel long products.

We are known for our ability to offer products in wide range of grades, shapes and sizes, high quality and reliability. Our stainless steel is sustainable material with over 90% of recycled content.

Products are melted in Europe with energy sources and raw materials that provide our customers a lower than industry average carbon footprint.

Our offering includes Prodec® bar that stands for highly improved machinable bars. Our long legacy gives a proven track record of our technical expertise that customers benefit when dealing with us.

Sheffield Stainless Bar operations was established in Sheffield in 2010 by Outokumpu, now part of the Marcegaglia Group manufacturing stainless steel bars and rebar.

Sheffield Stainless Bar is located in Sheffield on the same site as the SMACC Meltshop with a short distance from the ASR Wire Rod Mill where wire rod feedstock is supplied for our bar and rebar production.

#### Key benefits

- European melt, integrated production
- Low carbon footprint
- Consistent products
- Good overall cost of quality
- Prodec® for improved machining applications
- Easy to do business with

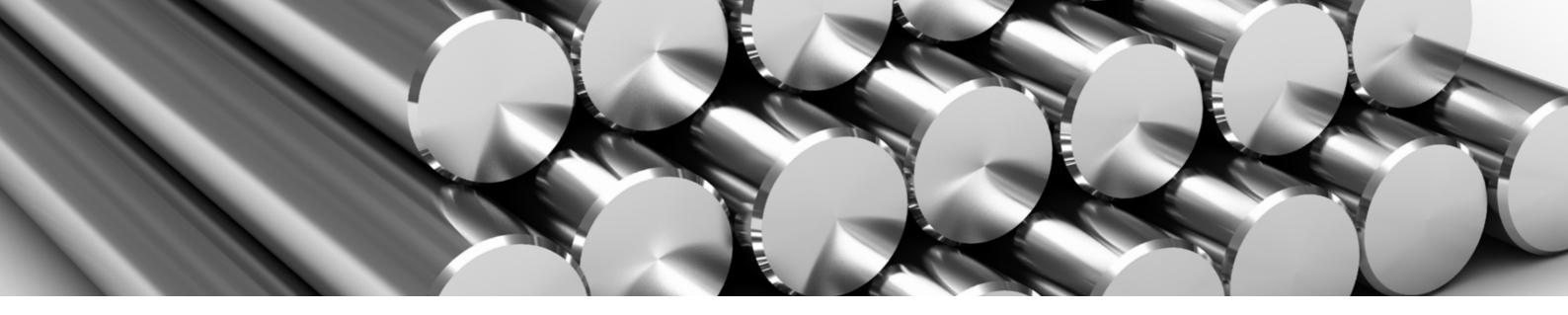


Contact sales at sales.bar@stainless-marcegaglia.com

# High performance stainless steel bars

Marcegaglia Sheffield, UK offers services for distributors providing high quality, competitive prices and short lead times.

Our industry-leading, over a century long expertise in stainless steel production and our unique processes allow us to deliver bars with exceptional consistency and machinability. Our end-to-end approach, from melting and rolling to finishing and testing, ensures the highest quality according to customer specifications. Delivery reliability, competitive lead times and technical support are the cornerstones of our customer promise.




Max one week delivery time to Europe

New supplier in the market offering stock services

High quality bars in both standard and improved machinable bars

Wide range of bars in round, square and hexagon shapes



## Cold finished Peeled bar bar

The cold drawing process is improving the mechanical strength and dimensional tolerances. It is achieved by cold deforming a hot rolled product using a die, resulting in a slight area reduction. Marcegaglia Sheffield Bar Stock offers cold drawn products in round, square and hexagonal shape in 3 - 6 meters lenghts with a bundle weight of around half a tonne.

Hot rolled bars have generally small surface imperfections after hot rolling, that are formed during the cooling process. Metal oxide layers can also build up over time. Peeling process is removing imperfections as well as produces smooth surface and glossy visual appearance for the bars.

These properties are required in the end-customer's further processing.

| Grade              | ISO 286 h9 | ISO 286 h9 | ISO 286 h11 | ISO 286 h11 |
|--------------------|------------|------------|-------------|-------------|
|                    | Cold Drawn | Peeled     | Cold Drawn  | Cold Drawn  |
|                    | •          |            | •           |             |
| 304L/304/4307/4301 | 6–32       | 28-90      | 8–100       | 8–100       |
| 316L/316/4404/4401 | 6–32       | 28-90      | 8–100       | 8–100       |
| 303/4305           | 6–32       | 28-90      | 8–100       | 8–100       |

| Standards                     | Comment |
|-------------------------------|---------|
| EN 10088-3                    | _       |
| EN 10088-5                    | _       |
| EN 10272                      | -       |
| AD 2000 merkblatt W0, W2, W10 | _       |
| NACE MR0103, MR0175           | _       |
| PED 2014/68/EU                | _       |

All material is certified according to EN 10204/3.1.

## Hot rolled bar

The hot rolled product has a slightly higher elongation compared to a cold drawn product.

Marcegaglia Sheffield Bar Stock offers two different surface conditions; peeled or hot rolled in round bars from stock to meet your requirements. Length are approximately 3 - 6 m round bars from stock and

bundle weight is depending on size, varying between

| Grade              | ISO 286, k11, EN 10060 | EN 10059 |
|--------------------|------------------------|----------|
|                    | •                      |          |
| 304L/304/4307/4301 | 28-90                  | 10–100   |
| 316L/316/4404/4401 | 28-90                  | 10–100   |
| 303/4305           | 28-90                  | 10–100   |

| Standards                     | Comment               |
|-------------------------------|-----------------------|
| EN 10088-3                    | -                     |
| EN 10088-5                    | _                     |
| EN 10272                      | -                     |
| AD 2000 merkblatt W0, W2, W10 | -                     |
| ASTM A276, A479               | for larger dimensions |
| NACE MR0103, MR0175           | -                     |
| PED 2014/68/EU                | _                     |

All material is certified according to EN 10204/3.1.

0.5 to 2.2 tonnes.

### Hexagon bar

Marcegaglia and Böllinghaus Steel offer stainless steel hexagon bars from 8–100 mm / 5/16" to 4".

We produce our hexagon bar in a wide range of ferritic, austenitic, duplex, heat resistant, and precipitation hardening stainless steels as well as the Prodec® range for superior machinability.

Our products have consistently high quality, including their surface, straightness, and chemical composition. Our experts can also guide you through the whole process from material selection to end use, helping you to get the best possible results from our materials.

#### Dimensions 8–100 mm / 5/16" to 4"



#### **Benefits**

- High surface quality means bar can be used without further surface treatment
- High machinability with Prodec® range grades
- High tolerance conformance

| Dimensions |             |            |           |
|------------|-------------|------------|-----------|
| mm         | in          | Condition  | Tolerance |
| 8 - 100    | 5/16" to 4" | Cold drawn | h11       |





Marcegaglia's representative for hexagon, square, and flat bars in Europe, Asia, and Latin America is Böllinghaus Steel.

### Square bar

Marcegaglia and Böllinghaus Steel offer stainless steel square bars from 8-100 mm / 5/16" to 4" and 10-100 mm / 1/2" to 4". We produce our square bar in a wide range of ferritic, austenitic, duplex, heat resistant, and precipitation hardening stainless steels as well as the Prodec range for superior machinability.

Our products have consistently high quality, including their surface, straightness, and chemical composition. Our experts can also guide you through the whole process from material selection to end use, helping you to get the best possible results from our materials.

#### Dimensions 8-100 mm / 5/16" to 4" and 10-100 mm / 1/2" to 4"



#### **Benefits**

- High surface quality means bar can be used without further surface treatment
- High machinability with Prodec® range grades
- High tolerance conformance

| Dimensio | ns          |            |           |
|----------|-------------|------------|-----------|
| mm       | in          | Condition  | Tolerance |
| 8 - 100  | 5/16" to 4" | Cold drawn | h11       |
| 10 - 100 | ½ to 4"     | Hot rolled | -         |





Marcegaglia's representative for hexagon, square, and flat bars in Europe, Asia, and Latin America is Böllinghaus Steel.

60 Marcegaglia Specialties 61

### Chemical composition

#### **General purpose standard bars**

| Steel designation | on     |      |        |               | Typical | chemical con | nposition, % | by wt. |          |
|-------------------|--------|------|--------|---------------|---------|--------------|--------------|--------|----------|
| Marcegaglia       | EN     | ASTM | UNS    | ISO           | С       | Cr           | Ni           | Мо     | Products |
| 304/4301          | 1.4301 | 304  | S30400 | 4301-304-00-I | 0.04    | 18.1         | 8.1          | _      | 000      |
| 304L/4307         | 1.4307 | 304L | S30403 | 4307-304-03-I | 0.02    | 18.1         | 8.1          | -      | 000      |
| 316/4401          | 1.4401 | 316  | S31600 | 4401-316-00-I | 0.04    | 17.2         | 10.1         | 2.1    | • • •    |
| 316L/4404         | 1.4404 | 316L | S31603 | 4404-316-03-I | 0.02    | 17.2         | 10.1         | 2.1    |          |
| 303/4305          | 1.4305 | 303  | S30300 | 4305-303-00-I | 0.05    | 17.2         | 8.1          | -      |          |

Marcegaglia grades 304/4301 and 304L/4307 are dual certified.

## Mechanical properties

#### **General purpose standard bars**

| Steel designation | Product form   | Yield strength            | Tensile strength        | Elongation            | Hardness   |
|-------------------|----------------|---------------------------|-------------------------|-----------------------|------------|
| Marcegaglia       |                | R <sub>p0.2</sub> (MPa)   | R <sub>m</sub> (MPa)    | <b>A</b> <sub>5</sub> | (HBW) max. |
| 304/4301          | Hot rolled bar | 175                       | 500–700                 | 45/35 <sup>2)</sup>   | 215        |
|                   | Cold drawn bar | 400/380/175 1)            | 600-930/600-930/500-830 | 25/25/30              | _          |
| 304L/4307         | Hot rolled bar | 175                       | 500–700                 | 45/35 <sup>2)</sup>   | 215        |
|                   | Cold drawn bar | 400/380/175 <sup>1)</sup> | 600-930/600-930/500-830 | 25/25/30              | _          |
| 316/4401          | Hot rolled bar | 200                       | 500–700                 | 40/30 <sup>2)</sup>   | 215        |
|                   | Cold drawn bar | 400/380/200               | 600-930/580-930/500-830 | 25/25/30              | _          |
| 316L/4404         | Hot rolled bar | 200                       | 500–700                 | 40/30 <sup>2)</sup>   | 215        |
|                   | Cold drawn bar | 400/380/200               | 600-930/580-930/500-830 | 25/25/30              | _          |
| 303/4305          | Hot rolled bar | 190                       | 500–700                 | 35                    | 230        |
|                   | Cold drawn bar | 400/400/190               | 600-950/600-950/500-850 | 15/15/20              | _          |

<sup>1)</sup> d<=10mm/10<d<=16/16<d<=40

Marcegaglia grades 304/4301 and 304L/4307 are dual certified.




<sup>&</sup>lt;sup>2)</sup> d<=160 long/160<d<=250 trans



### Tolerances

| Round peeled bars, ISO 28 | 6-2 k13   |  |
|---------------------------|-----------|--|
| Diameter, mm              | Tolerance |  |
| 18- <30                   | -0/+0.33  |  |
| 30-<50                    | -0/+0.39  |  |
| 50-<80                    | -0/+0.46  |  |
| 80- <120                  | -0/+0.54  |  |
| 120- <180                 | -0/+0.63  |  |
| 180- <250                 | -0/+0.72  |  |







| Cold drawn round bars, ISC | ) 286-2 h9 |  |
|----------------------------|------------|--|
| Diameter, mm               | Tolerance  |  |
| >6–10                      | -0.036/+0  |  |
| >10–18                     | -0.043/+0  |  |
| >18–30                     | -0.052/+0  |  |
| >30–50                     | -0.062/0   |  |



| Hot rolled round bars, EN | 10060     |  |
|---------------------------|-----------|--|
| Diameter, mm              | Tolerance |  |
| 10–15                     | ±0.4      |  |
| 16–25                     | ±0.5      |  |
| 26–35                     | ±0.6      |  |
| 36–50                     | ±0.8      |  |
| 52–80                     | ±1.0      |  |
| 85–100                    | ±1.3      |  |
| 105–120                   | ±1.5      |  |
| 125–160                   | ±2        |  |
| 165–200                   | ±2.5      |  |

| 123-100                                         | <b>±</b> Ζ     |
|-------------------------------------------------|----------------|
| 165–200                                         | ±2.5           |
|                                                 |                |
|                                                 |                |
|                                                 |                |
|                                                 |                |
|                                                 |                |
| Hot rolled square bars, EN 10059                |                |
| Hot rolled square bars, EN 10059  Dimension, mm | Tolerance      |
|                                                 | Tolerance ±0.4 |
| Dimension, mm                                   |                |

±0.8

±1.0

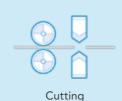


64 Marcegaglia Specialties

Marcegaglia Specialties

40-50

55–90




### End-to-end production platform













Pickling



Straightening

Surface and ultrasonic inspection

(SMACC) produces as cast billets, which are processed in the UK to be hot rolled, peeled and non-destructive testing. Produced bars can either be sold in the as-rolled condition (black bar), peeled condition or as ground bar.

Marcegaglia Stainless Sheffield's melting shop

Hot rolled, pickled



Heating



Rolling



Cutting Heat treatment



Straightening



Visual inspection and packing

Böllinghaus Steel is located in Hilden, Germany and has its own production facilities in Portugal. The portfolio comprises of hot rolled and pickled as well as cold drawn bars in various forms and lengths manufactured of stainless steel in various grades.

Cold drawn



Heating



Rolling



Heat treatment



Pickling



Cold drawing



Visual inspection and packing

Sheffield Stainless Bar in Sheffield, UK is a leading producer of hexagon and square cold drawn bars and Prodec superior machinability bars in small diameters.

## Ensuring quality with end-to-end production

#### Sheffield Stainless Bar



Melting shop Consistently produced high quality semis are made at the SMACC melting shop.



Billet feedstock
Our rolling mill uses billet
feedstock produced at the
SMACC melting shop.



Hot rolling into wire rod Rod coil feedstock is used for bar production at Sheffield Stainless Bar.



Coil pre-dipping

The surface of the bar is coated with a drawing lubricant to aid cold drawing.



for cold drawing Rod coils are moved from the pre-dipping station to the cold drawing line.



Cold drawing
Wire rod is drawn
through a die, reducing
the cross-sectional area
of the bar, and cut to
lengths.



Testing
Final process steps
include testing and
inspection of the material.



Packing
Packing and shipping
is done according
to customer-specific
requirements.

## High quality according to international standards

Our manufacturing programs are supported by in-house product inspection and testing, and the extensive experience of our technical team. SSB is accredited to recognized international standards, including:

- ISO 9001 TÜV Nord
- ISO 14001 TÜV Nord
- AD 2000 Merkblatt WO TÜV Nord
- CARES Certificate of Conformity of the Factory Production Control
- CARES CE Declaration of Conformity





## Round bar

| Product                        | Dimension | Length     | Tolerance                   |
|--------------------------------|-----------|------------|-----------------------------|
| Cold drawn                     | 6-25.4 mm | 2.2-6 m    | h9 & A484*                  |
| Cold drawn & Centerless ground | 6-25.4 mm | 2.2-6 m    | h8*                         |
| Cold finished                  | 28-90 mm  | 3 m or 6 m | h9 & A484 (ground polished) |
| Hot rolled & Peeled            | 28-90 mm  | 3 m or 6 m | k11 & A484                  |

<sup>\*</sup>Other tolerances available on request

## Hexagon bar

| Product        | Dimension | Length  | Condition  |
|----------------|-----------|---------|------------|
| Cold drawn bar | 8-25.4 mm | 2.2-6 m | h11 & A484 |

## Square bar

| Product        | Dimension  | Length  | Condition  |
|----------------|------------|---------|------------|
| Cold drawn bar | 8-22.23 mm | 2.2-6 m | h11 & A484 |

Prodec® grades - stock availability: 303 (1.4305), 304/304L (1.4301/1.4307), 316/316L (1.4401/1.4404)

Non-Prodec<sup>®</sup> grades - mill quantities: 17-4, 17-7, A240, 1.4547, 305, 310, 314, 347, 320, 321, 304Cu, 316Cu, 2101, 2304, welding grades

## Manufacturing standard

| Product     | Dimension         | Testing method     | Standard                 |
|-------------|-------------------|--------------------|--------------------------|
| Round bar   | All dimensions    | Eddy current       | EN 10277 Table 3 Class 3 |
| Round bar   | 28-90 mm          | Ultrasonic testing | EN 10308 Class 3*        |
| Round bar   | 28-90 mm          | Eddy current       | EN 10277 Table 3 Class 2 |
| Hexagon bar | 17, 19, 22, 24 mm | Eddy current       | EN 10277 Table 3 Class 2 |

<sup>\*</sup>Excluding 1.4305/303 grades

#### Product designation

Stainless steel for general purposes

### Supply conditions

- Dimensional tolerances according to EN 10278 or ASTM A484
- Corrosion testing to ASTM A262 Method E & EN ISO 3651-2 Method A on Prodec® 304, 316
- Upon request: certification according to AD 2000 W2/W10

#### Optional processing

- Centerless grinding
- Polishing (grit 240)
- Chamfering

## Standard chamfering edges

| Dimension | Depth at 45° |
|-----------|--------------|
| 8-10 mm   | 1 mm         |
| 10-20 mm  | 1.2 mm       |
| 30-90 mm  | 1-3 mm       |



## Round bar stock profile

| Cold drawn bar h9 | S           | tock Profil | е           |
|-------------------|-------------|-------------|-------------|
| Prodec® L=3000 mm | Ø<br>1.4305 | Ø<br>1.4307 | Ø<br>1.4404 |
| 6                 | х           | х           | х           |
| 6.35              | Х           | Х           | х           |
| 7                 |             |             |             |
| 8                 | Х           | х           | х           |
| 9                 |             |             |             |
| 9.53              | Х           | Х           | х           |
| 10                | Х           | Х           | х           |
| 11                |             |             |             |
| 12                | Х           | х           | х           |
| 12.7              | Х           | Х           | х           |
| 13                | Х           | Х           |             |
| 14                | Х           | х           | х           |
| 15                | Х           | Х           | х           |
| 15.88             | Х           | Х           | х           |
| 16                | Х           | Х           | х           |
| 17                |             |             |             |
| 18                | Х           | Х           | х           |
| 19                |             |             |             |
| 19.05             | Х           | Х           | х           |
| 20                | Х           | х           | х           |
| 21                | Х           | Х           | х           |
| 22                | Х           | Х           | х           |
| 22.23             | Х           | х           | Х           |
| 23                |             |             |             |
| 24                | х           | х           | х           |
| 25                | Х           | Х           | Х           |
| 25.4              | х           | x           | х           |

| Peeled k11        | Stock Profile |             | е           |
|-------------------|---------------|-------------|-------------|
| Prodec® L=6000 mm | Ø<br>1.4305   | Ø<br>1.4307 | Ø<br>1.4404 |
| 28                | х             | х           | х           |
| 30                | х             | х           | х           |
| 32                | Х             | х           | х           |
| 34                |               |             |             |
| 35                | Х             | х           | х           |
| 36                | Х             | х           | х           |
| 38                | Х             | х           | х           |
| 40                | Х             | х           | х           |
| 42                | Х             | х           |             |
| 45                | Х             | х           | х           |
| 50                | Х             | х           | х           |
| 52                | Х             | х           | х           |
| 55                | Х             | х           | х           |
| 60                | Х             | х           | х           |
| 65                | Х             | х           | х           |
| 70                | Х             | х           | Х           |
| 75                | х             | х           | х           |
| 80                | Х             | х           | х           |
| 85                | Х             | Х           | Х           |
| 90                | Х             | Х           | х           |

| Cold finished h9  | S           | tock Profil | е           |
|-------------------|-------------|-------------|-------------|
| Prodec® L=3000 mm | Ø<br>1.4305 | Ø<br>1.4307 | Ø<br>1.4404 |
| 28                | х           | х           | х           |
| 30                | x           | х           | х           |
| 32                | x           | х           | х           |
| 34                | x           |             |             |
| 35                | x           | Х           | Х           |
| 36                | х           | х           | х           |
| 38                | x           | х           | х           |
| 40                | x           | х           | х           |
| 42                | х           | Х           | х           |
| 45                | x           | х           | х           |
| 50                | x           | х           | х           |
| 52                | x           | х           | х           |
| 55                | x           | х           | х           |
| 60                | x           | х           | х           |
| 65                | х           | х           | х           |
| 70                | х           | х           | х           |
| 75                | х           | х           | х           |
| 80                | х           | Х           | х           |

| Peeled, a484      | S           | tock Profil | е           |
|-------------------|-------------|-------------|-------------|
| Prodec® L=3000 mm | Ø<br>1.4305 | Ø<br>1.4307 | Ø<br>1.4404 |
| 38.1              | Х           | х           | х           |
| 41.28             | х           | х           | х           |
| 44.45             | х           | х           | Х           |
| 50.8              | х           | х           | Х           |
| 57.15             | x           | х           | Х           |
| 60.33             | х           | х           | х           |
| 63.5              | х           | х           | Х           |
| 69.85             | х           | х           | Х           |
| 76.2              | x           | х           | Х           |
| 82.55             | х           | х           | Х           |
| 88.9              | x           | х           | Х           |

#### Contact sales at sales.bar@stainless-marcegaglia.com

# Ensuring quality with end-to-end production

## Sheffield Stainless Bar



Melting shop Consistently produced high quality semis are made at the SMACC melting shop.



Billet feedstock
Our rolling mill uses billet
feedstock produced at the
SMACC melting shop.



Hot rolling into wire rod Rod coil feedstock is used for bar production at Sheffield Stainless Bar.



Coil pre-dipping
The surface of the bar is coated with a drawing lubricant to aid cold drawing.



Preparation for cold drawing Rod coils are moved from the pre-dipping station to the cold drawing line.



Cold drawing
Wire rod is drawn
through a die, reducing
the cross-sectional area
of the bar, and cut to
lengths.



Testing
Final process steps
include testing and
inspection of the material.



Packing
Packing and shipping
is done according
to customer-specific
requirements.

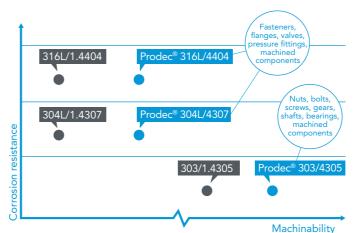
## High quality according to international standards

Our manufacturing programs are supported by in-house product inspection and testing, and the extensive experience of our technical team. SSB is accredited to recognized international standards, including:

- ISO 9001 TÜV Nord
- ISO 14001 TÜV Nord
- BS OHSAS 18001 TÜV Nord
- AD 2000 Merkblatt WO TÜV Nord
- CARES Certificate of Conformity of the Factory Production Control
- CARES CE Declaration of Conformity

# Prodec® datasheet - Stainless steel bar optimized for improved machinability

## General characteristics


Stainless steel grades optimized for improved machinability with longer tool life and enhanced quality.




| Product name                                                                                                                                                                                                                                                              | Typical applications                                                                                                                       | Product forms             |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|
| Prodec® 304L/4307 A version of 304L/4307 with improved machinability. Improves productivity with faster machining, longer tool life, better dimensional tolerances, superior machined surface quality, and improved yields compared to conventionally produced 304L/4307. | <ul><li>Fasteners</li><li>Flanges and valves</li><li>Pressure fittings</li><li>Machined components</li></ul>                               | Bar<br>Wire rod<br>Billet |
| Prodec® 316L/4404 A version of 316L/4404 with improved machinability. Improves productivity with faster machining, longer tool life, better dimensional tolerances, superior machined surface quality, and improved yields compared to conventionally produced 316L/4404. | <ul> <li>Fasteners</li> <li>Flanges and valves</li> <li>Pressure fittings</li> <li>Machined components</li> </ul>                          | Bar<br>Wire rod<br>Billet |
| Prodec® 303/4305 For applications that use 303/1.4305. This product gives you faster machining, longer tool life, better tolerances, superior machined surface quality, and reduced scrap losses compared to conventionally produced 303/1.4305.                          | <ul> <li>Nuts, bolts, and screws</li> <li>Gears</li> <li>Shafts</li> <li>Bearings</li> <li>Machined parts for process equipment</li> </ul> | Bar<br>Wire rod<br>Billet |

## Product performance comparison

#### Corrosion resistance vs machinability



#### Bar – faster machining with Prodec®



Worst competitor results

Average competitor results

■ Average Marcegaglia Prodec® results

Testing done with Marcegaglia Prodec® and 7 European competitors' bars with improved machinability in grades 316L/4404 and 304L/4307. The tool used for testing was a CNMG 2015 cemented carbide insert

#### Bar – cost savings with Prodec®

|                                |       | Standard<br>316L/4404 | Prodec <sup>®</sup><br>316L/4404 | Improvement |     |
|--------------------------------|-------|-----------------------|----------------------------------|-------------|-----|
| Cutting speed                  | m/min | 92                    | 137                              | 45          |     |
| Processing time/component      | min   | 16.9                  | 7.7                              |             | 54% |
| Total machining cost/component | €     | 23.1                  | 10.6                             | 12.6        | 55% |
| Productivity increase          | %     |                       |                                  |             | 54% |
| Savings/component              | €     |                       |                                  | 12.6        |     |

A cost saving example for rough turning a 6» diameter Prodec® 316L/4404 peeled bar with a cemented c

## Products and dimensions

| Metric            |               |
|-------------------|---------------|
| Round bar         | Offering (mm) |
| Cold drawn        | 6–25.4        |
| Centerless ground | 6–25.4        |
| Peeled            | 28–90         |
| Black bar         | 28–90         |

| Metric                 |               |
|------------------------|---------------|
| Hexagon and square bar | Offering (mm) |
| Hexagon                | 8–25.4        |
| Square                 | 8–22.23       |



## Chemical composition

#### The chemical composition is given as % by mass.

| Grade  | Marcegaglia E     | EN     | ASTM |        | PRE | Typical chemical composition, % by mass |      |      |     |   |        |
|--------|-------------------|--------|------|--------|-----|-----------------------------------------|------|------|-----|---|--------|
| family | name              | EIN    | TYPE | UNS    | PKE | С                                       | Cr   | Ni   | Мо  | N | Others |
| Α      | Prodec® 304L/4307 | 1.4307 | 304L | S30403 | 18  | 0.02                                    | 18.1 | 8.1  | _   | _ | _      |
| А      | Prodec® 316L/4404 | 1.4404 | 316L | S31603 | 24  | 0.02                                    | 17.2 | 10.1 | 2.1 | _ | -      |
| Α      | Prodec® 303/4305  | 1.4305 | 303  | S30300 | 17  | 0.05                                    | 17.2 | 8.1  | _   | _ | 0.35   |

Chemical compositions and PRE calculations are based on Marcegaglia typical values.

Pitting Resistance Equivalent is calculated using the following formula:  $PRE = \%Cr + 3.3 \times \%Mo + 16 \times \%N$ 

Surface finish and other factors determine the actual corrosion resistance of a particular product.

## Corrosion resistance

Although improvements in machinability have been associated with reduced corrosion resistance in the past, the Prodec® treated products have shown corrosion resistance within the range typically expected from comparable stainless steel products.

Prodec® 304L/4307 is a versatile, general-purpose stainless steel with good resistance to atmospheric corrosion, many organic and inorganic chemicals, as well as foods and beverages. It has also been used in vacuum-processing equipment and specialized instruments where high integrity is essential.

Prodec® 316L/4404 provides improved resistance to pitting and crevice corrosion in environments containing chlorides and other halides.

Prodec® 303/4305 is resistant to mildly corrosive environments. In order to achieve the best possible corrosion resistance, all Prodec® 303/4305 parts should be chemically treated to remove sulfides from the final surface.



## Mechanical properties

| Metric            |                |                                                   |                                          |                                  |                        |
|-------------------|----------------|---------------------------------------------------|------------------------------------------|----------------------------------|------------------------|
| Marcegaglia name  | Product form   | Min. yield<br>strength R <sub>p0.2</sub><br>(MPa) | Tensile<br>strength R <sub>m</sub> (MPa) | Elongation<br>A <sub>5</sub> (%) | Hardness<br>(HBW) max. |
| Prodec® 304L/4307 | Hot rolled bar | 175                                               | 500–700                                  | 45/35                            | 215                    |
| Prodec* 304L/4307 | Cold drawn bar | 400/380/175                                       | 600-930/600-930/500-830                  | 25/25/30                         | -                      |
| Prodec® 316L/4404 | Hot rolled bar | 200                                               | 500–700                                  | 40/30                            | 215                    |
| Prodec° 316L/4404 | Cold drawn bar | 400/380/200                                       | 600-930/580-930/500-830                  | 25/25/30                         | -                      |
| Prodec® 303/4305  | Hot rolled bar | 190                                               | 500–750                                  | 35                               | 230                    |
| rrodec 303/4303   | Cold drawn bar | 400/400/190                                       | 600-950/600-950/500-850                  | 15/15/20                         | -                      |

Minimum values for Hot rolled bars and Cold drawn bars according to EN 10088-3.5) HB max

## Physical properties

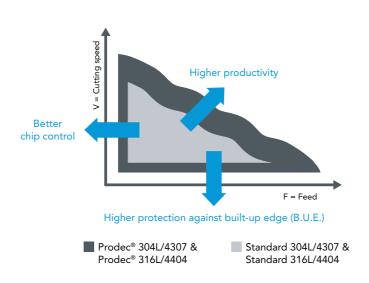
| Metric              | Metric              |                                               |                                                                          |                                         |                                      |                                           |  |  |  |  |
|---------------------|---------------------|-----------------------------------------------|--------------------------------------------------------------------------|-----------------------------------------|--------------------------------------|-------------------------------------------|--|--|--|--|
| Marcegaglia<br>name | Density<br>[kg/dm³] | Modulus<br>of elasticity<br>at 20 °C<br>[GPa] | Coefficient<br>of thermal expansion<br>20–100 °C<br>[10 <sup>6</sup> /K] | Thermal conductivity at 20 °C [W/(m*K)] | Thermal capacity at 20 °C [J/(kg*K)] | Electrical resistivity at 20 °C [Ω*mm²/m] |  |  |  |  |
| Prodec® 304L/4307   | 7.9                 | 200                                           | 16.0                                                                     | 15                                      | 500                                  | 0.73                                      |  |  |  |  |
| Prodec® 316L/4404   | 8.0                 | 200                                           | 16.0                                                                     | 15                                      | 500                                  | 0.75                                      |  |  |  |  |
| Prodec® 303/4305    | 7.9                 | 200                                           | 16.0                                                                     | 15                                      | 500                                  | 0.73                                      |  |  |  |  |

Values according to EN 10088-1.

| Imperial Control of the Control of t |                      |                                   |                                                           |                                        |                                        |                                      |  |  |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|-----------------------------------|-----------------------------------------------------------|----------------------------------------|----------------------------------------|--------------------------------------|--|--|--|--|
| Marcegaglia<br>name                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Density<br>[lbm/in³] | Modulus<br>of elasticity<br>[psi] | Coefficient of thermal expansion 68-212 °F [µin/(in* °F)] | Thermal conductivity [Btu/(hr*ft* °F)] | Thermal<br>capacity<br>[Btu/(lbm* °F)] | Electrical<br>resistivity<br>[μΩ*in] |  |  |  |  |
| Prodec® 304L/4307                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.285                | 29 * 10 <sup>6</sup>              | 8.89                                                      | 8.7                                    | 0.119                                  | 28.74                                |  |  |  |  |
| Prodec® 316L/4404                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.289                | 29 * 10 <sup>6</sup>              | 8.89                                                      | 8.7                                    | 0.119                                  | 29.53                                |  |  |  |  |
| Prodec® 303/4305                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.285                | 29 * 106                          | 8.89                                                      | 8.7                                    | 0.119                                  | 28.74                                |  |  |  |  |

Values according to EN 10088-1.

### **Fabrication**


#### Machining

Prodec® products enable higher machining speeds, longer tool life, and superior part quality with reduced total cost for finished parts.

Prodec® 304L/4307 and Prodec® 316L/4404 are special variants of standard Types 304 (UNS S30400) / 304L (UNS S30403) and 316 (UNS S31600) / 316L (UNS S31603) respectively with enhanced metallurgy for better machinability. The general rules for machining stainless steel also apply to the Prodec® grades. The difference is that Prodec® grades enable a longer tool life and/or tougher machining conditions. The machining window illustrated on the right gives a demonstration of this.

#### Machining guidelines

The cutting parameters in this guideline will work under normal cutting conditions. It is suggested to begin with cutting parameters in the ranges indicated in the tables and then to improve parameters by moving to higher or lower speed, feed or depth of cut until best performance is reached. It is possible to end up in a range somewhat outside the values indicated in the tables depending on the actual machine set-up.



#### Turning

- The machine and setup must be rigid
- Use shortest possible tool length
- Use coolant
- Use smallest possible nose radius to avoid vibrations

#### Milling

- Avoid cutting through holes/cavities
- Ensure good chip evacuation, recutting of chips may cause tool damage

|           |                                     | Carbid           | e Tooling        | HSS Tooling   |                  |                  |               |
|-----------|-------------------------------------|------------------|------------------|---------------|------------------|------------------|---------------|
| Turning   | Depth<br>of cut<br>or width<br>(mm) | Speed<br>(m/min) | Feed<br>(mm/rev) | Tool<br>Grade | Speed<br>(m/min) | Feed<br>(mm/rev) | Tool<br>Grade |
| Finishing | -2                                  | 260-280          | 0.10             | M10-15        | 50 <sup>1)</sup> | 0.10             | T15           |
| Medium    | 2–5                                 | 200-260          | 0.25             | M10-25        | 35               | 0.25             | T15           |
| Roughing  | 5–10                                | 50–220           | 0.40             | M25-35        | 20               | 0.40             | T15           |

<sup>1)</sup> Coated tools

|                | C                | arbide Tooli     | ing           | HSS Tooling      |                  |               |  |
|----------------|------------------|------------------|---------------|------------------|------------------|---------------|--|
| Milling        | Speed<br>(m/min) | Feed<br>(mm/rev) | Tool<br>Grade | Speed<br>(m/min) | Feed<br>(mm/rev) | Tool<br>Grade |  |
| Face milling   | 150-250          | 0.08-0.30        | M10-30        | 24-40            | 0.08-0.20        | T15           |  |
| Side milling   | 180-240          | 0.08-0.30        | M10-30        | 24-40            | 0.08-0.20        | T15           |  |
| End milling    | 150-220          | 0.05-0.20        | M10-30        | 24-40            | 0.025-0.15       | T15           |  |
| End milling 2) | 50-100           | 0.05-0.20        | M35           | _                | -                | _             |  |

<sup>2)</sup> Solid cemented carbide

#### Drilling - high speed steel twist drills

- Use coolant
- If possible use internal coolant through drill
- Use of cobalt high alloyed drills is preferred
- With PVD-coated HSS drills the cutting speed can be increased by 10%
- Use as short drill as possible

#### Forming

#### Cold forming

Prodec® products can be readily formed and fabricated with the full range of cold forming operations.

They can be used in heading, drawing, bending, and upsetting. Cold forming operations will increase the strength and hardness of the material, and may leave it slightly magnetic.

#### Hot forming

Prodec® 303/4305, Prodec® 304L/4307, and Prodec® 316L/4404 can be forged in the 925–1200 °C/1700–2200 °F range. For maximum corrosion resistance, forgings should be annealed at a minimum temperature of 1030°C/1900 °F and then water quenched or rapidly cooled by other means after hot forming operations.

#### Welding

Prodec® 304L/4307 is readily weldable with the full range of conventional welding methods with the exception of oxyacetylene. AWS E308/ER308 or E308L/ER308L filler metals should be used, but molybdenum-containing austenitic stainless steel filler metals may also be considered. After welding, it may be necessary to fully anneal to restore the corrosion resistance lost by sensitization to intergranular corrosion when chromium carbides were precipitated in the grain boundaries in the weld heat-affected zone (HAZ).

Prodec® 316L/4404 is readily welded with the full range of conventional welding methods with the exception of oxyacetylene. AWS E316L/ER316L and other low-carbon filler metals with a molybdenum content higher than that of the base metal should be used.

Prodec<sup>®</sup> 303/4305 stainless steel is not recommended for applications requiring welding. When welding is necessary, AWS E312 filler metal may be considered. An alternative product for parts requiring welding is Prodec<sup>®</sup> 304L/4307.

|             | HSS Tooling      |                  |                  |                  |  |  |  |  |
|-------------|------------------|------------------|------------------|------------------|--|--|--|--|
| Drilling 3) | Diameter<br>(mm) | Speed<br>(m/min) | Feed<br>(mm/rev) | Rpm<br>(rev/min) |  |  |  |  |
|             | 1                | 10–12            | 0.05             | 3200-3800        |  |  |  |  |
|             | 3                | 15–17            | 0.10             | 1600-1800        |  |  |  |  |
|             | 5                | 17–20            | 0.12             | 1080-1270        |  |  |  |  |
|             | 10               | 17–20            | 0.15             | 540-640          |  |  |  |  |
|             | 15               | 17–20            | 0.20             | 360-430          |  |  |  |  |
|             | 20               | 17–20            | 0.30             | 270-320          |  |  |  |  |
|             | 30               | 17–20            | 0.30             | 180–220          |  |  |  |  |

3) HSS-5%Co

#### Standards and approvals

The most commonly used international product standards are given in the table below.

#### Standards

- EN 10088-3
- EN 10088-5
- EN 10272
- ASME SA479
- ASTM A479/479M
- ASTM A276
- ASTM A555
- ASTM A493

#### Certificates and approvals

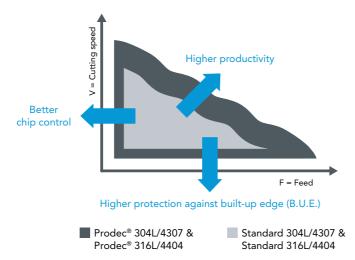
Marcegaglia Stainless Sheffield meets the most common certifications and approvals:

- AD 2000 Merkblatt
- Approval of Material Manufacturers
- Factory Production Control Certificate
- ISO 9001
- ISO 14001
- ISO 50001
- ISO 45001
- Pressure Equipment Directive (PED)

Contact sales at sales.bar@stainless-marcegaglia.com

# Machining guideline for Prodec® 304L/4307 and Prodec® 316L/4404

Prodec® 304L/4307 and Prodec® 316L/4404 are special variants of standard Types 304 (UNS S30400) / 304L (UNS S30403) and 316 (UNS S31600) / 316L (UNS S31603) respectively with enhanced metallurgy for better machinability. The general rules for machining stainless steel also apply to the Prodec® grades. The difference is that Prodec® grades enable a longer tool life and/or tougher machining conditions. The machining window illustrated on the right gives a demonstration of this.


Other fabrication operations such as welding, hot working and cold working can be performed in the same way as for standard 304L/4307 and 316L/4404.

#### Product forms

Prodec® 304L/4307 and Prodec® 316L/4404 are available as round, hexagon and square bars, as well as wire rod and concast billets.

#### Machining guidelines

The cutting parameters in this guideline will work under normal cutting conditions. It is suggested to begin with cutting parameters in the ranges indicated in the tables and then to improve parameters by moving to higher or lower speed, feed or depth of cut until best performance is reached. It is possible to end up in a range somewhat outside the values indicated in the tables depending on the actual machine set-up. A guide for further optimization of cutting parameters can be found under the "Troubleshooting" section on the next page.



#### Turning

- The machine and setup must be rigid
- Use shortest possible tool length
- Use coolant
- Use smallest possible nose radius to avoid vibrations

#### Milling

- Avoid cutting through holes/cavities
- Ensure good chip evacuation, recutting of chips may cause tool damage

|                 |                                     | Carbid           | e Tooling        | HSS Tooling   |                  |                  |               |
|-----------------|-------------------------------------|------------------|------------------|---------------|------------------|------------------|---------------|
| Turning         | Depth<br>of cut<br>or width<br>(mm) | Speed<br>(m/min) | Feed<br>(mm/rev) | Tool<br>Grade | Speed<br>(m/min) | Feed<br>(mm/rev) | Tool<br>Grade |
| Finishing       | -2                                  | 260-280          | 0.10             | M10-15        | 50 <sup>1)</sup> | 0.10             | T15           |
| Medium          | 2–5                                 | 200-260          | 0.25             | M10-25        | 35               | 0.25             | T15           |
| Roughing        | 5–10                                | 50-220           | 0.40             | M25-35        | 20               | 0.40             | T15           |
| 1) Coated tools |                                     |                  |                  |               |                  |                  |               |

**HSS Tooling** Tool Grade Milling Speed Feed Tool 24-40 T15 150-250 0.08-0.30 M10-30 0.08-0.20 24-40 T15 180-240 M10-30 0.08-0.20 0.05-0.20 M10-30 24-40 0.025-0.15 T15 End milling 150-220 End milling <sup>2)</sup> 50–100 0.05-0.20 M35

#### Drilling - high speed steel twist drills

- Use coolant
- If possible use internal coolant through drill
- Use of cobalt high alloyed drills is preferred
- With PVD-coated HSS drills the cutting speed can be increased by 10%
- Use as short a drill as possible

## Other machining operations

#### Cut-off

 Reduce feed by 50% approximately 6mm from the center

#### Reaming

 Type of coolant: emulsion or cutting oil

#### **Tapping**

- For blind holes use spiral flute grinding for good chip evacuation
- For through holes use spiral point grinding with gun nose to push the hips forward

#### Threading single insert

- Full profile insert for high quality thread forms
- V-profile insert threading with minimum tool inventory
- Multipoint insert for economic threading in mass production

#### Drilling indexable insert

 Cutting data is very dependent on the drill design. Hence, the manufacturers recommendations must be considered

## Contact sales at sales.bar@stainless-marcegaglia.com

|             |                  | HSS Tooling      |               |                  |  |  |  |  |  |
|-------------|------------------|------------------|---------------|------------------|--|--|--|--|--|
| Drilling 3) | Diameter<br>(mm) | Speed<br>(m/min) | Feed (mm/rev) | Rpm<br>(rev/min) |  |  |  |  |  |
|             | 1                | 10–12            | 0.05          | 3200-3800        |  |  |  |  |  |
|             | 3                | 15–17            | 0.10          | 1600-1800        |  |  |  |  |  |
|             | 5                | 17–20            | 0.12          | 1080-1270        |  |  |  |  |  |
|             | 10               | 17–20            | 0.15          | 540-640          |  |  |  |  |  |
|             | 15               | 17–20            | 0.20          | 360-430          |  |  |  |  |  |
|             | 20               | 17–20            | 0.30          | 270-320          |  |  |  |  |  |
|             | 30               | 17–20            | 0.30          | 180–220          |  |  |  |  |  |

3) HSS-5%Co

|                                  |                  | Carbide Too      | oling                      | HSS Tooling      |                  |               |  |
|----------------------------------|------------------|------------------|----------------------------|------------------|------------------|---------------|--|
| Other<br>machining<br>operations | Speed<br>(m/min) | Feed<br>(mm/rev) | Tool<br>Grade              | Speed<br>(m/min) | Feed<br>(mm/rev) | Tool<br>Grade |  |
| Cut-off                          | 100-150          | 0.05-0.15        | M30                        | 24               | 0.05             | T15           |  |
| Reaming                          | 50               | 0.10-0.40        | M10-M30                    | 10–15            | 0.10-0.40        | T15           |  |
| Tapping                          | -                | _                | _                          | 5–13             | -                | _             |  |
| Threading singel insert          | 90–130           | -                | M10-M30                    | 15–20            | -                | T15           |  |
| Drillling indexable insert       | 200–250          | 0.06–0.12        | Center M30<br>Periferi M10 | -                | -                | -             |  |

## Troubleshooting



#### Flank wea

For longer tool life – reduce cutting speed or use a harder insert.



#### Notch wear

Notch wear is a common wear mechanism when machining stainless steel. Increased cutting speed will reduce notch but increase flank wear. If possible, use an insert with smaller entering angle 60-80 degrees or variable cutting depth or softer insert grade.



#### Built-up edge (B.U.E.)

Built-up edge occurs when the cutting speed is too low and the stainless steel tends to stick to the tool (in milling the chips stick to the tool). To avoid – increase cutting speed or use another coating.



#### Plastic deformation

To avoid – reduce either cutting speed, feed or use a harder insert.



#### Long chips

To avoid – increase feed or use an insert with smaller chip breaker.

<sup>2)</sup> Solid cemented carbide

# Machining guideline for Prodec® 303/4305

Prodec® 303/4305 is a fully resulfurized free-machining austenitic stainless steel. The Prodec® brand name means this steel has been specially melted and treated by Marcegaglia's proprietary ladle metallurgy techniques to maximize machinability while retaining good mechanical properties, corrosion resistance, and forming characteristics. This free cutting stainless steel gives you faster machining, longer tool life, better tolerances, superior machined surface quality, and reduced scrap losses compared to conventionally produced EN 1.4305.


#### Product forms

Prodec® 303/4305 is available as round, hexagon and square bars as well as wire rod and concast billets.

#### Machining guidelines

The cutting parameters in this guideline will work under normal cutting conditions. It is suggested to begin with cutting parameters in the ranges indicated in the tables and then to improve parameters by moving to higher or lower speed, feed or depth of cut

until best performance is reached. It is possible to end up in a range somewhat outside the values indicated in the tables depending on the actual machine set-up. A guide for further optimization of cutting parameters can be found under the "Troubleshooting" section on the next page.



#### **Turnina**

- The machine and setup must be rigid
- · Use shortest possible tool length
- Use coolant
- Use smallest possible nose radius to avoid vibrations

#### Milling (only end milling)

- The machine and setup must be rigid
- Use shortest possible tool length
- Use coolant
- Use smallest possible nose radius to avoid vibrations

|           | Carbide Tooling                  |         |                  |               | HSS Tooling      |                  |               |
|-----------|----------------------------------|---------|------------------|---------------|------------------|------------------|---------------|
| Turning   | Depth<br>of cut or<br>width (mm) | (m/min) | Feed<br>(mm/rev) | Tool<br>Grade | Speed<br>(m/min) | Feed<br>(mm/rev) | Tool<br>Grade |
| Finishing | 0.050-0.10                       | 180–375 | 0.10-0.25        | M10-15        | 40-55            | 0.12-0.25        | T15           |
| Roughing  | 0.12-5.0                         | 90-220  | 0.25-0.60        | M25-35        | 30-40            | 0.38-0.50        | T15           |

|                             |                                     | Carbide          | Tooling              |               |                  | HSS Tooling      |               |
|-----------------------------|-------------------------------------|------------------|----------------------|---------------|------------------|------------------|---------------|
| Milling                     | Depth<br>of cut<br>or width<br>(mm) | Speed<br>(m/min) | Feed ex.<br>(mm/rev) | Tool<br>Grade | Speed<br>(m/min) | Feed<br>(mm/rev) | Tool<br>Grade |
| End<br>milling <sup>1</sup> | 1.0–15.0                            | 50–250           | 0.050-0.20           | M35           | 10–50            | 0.075–0.15       | T15           |

1) Solid cemented carbide

## Drilling – high speed steel twist drills

- Use coolant
- If possible use internal coolant through drill
- Use of cobalt high alloyed drills is preferred
- With PVD-coated HSS drills the cutting speed can be increased by 10%
- Use as short drill as possible

## Other machining operations

#### Cut-off

 Reduce feed by 50% approximately 6mm from the center

#### **Tapping**

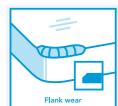
- For blind holes use spiral flute grinding for good chip evacuation
- For through holes use spiral point grinding with gun nose to push the chips forward

#### Threading single insert

- Full profile insert for high quality thread forms
- V-profile insert threading with minimum tool inventory
- Multipoint insert for economic threading in mass production

#### Forming

- Use coolant
- The machine and setup must be rigid
- Use shortest possible tool length


Contact sales at sales.bar@stainless-marcegaglia.com

|                       |                  | HSS To           | ooling               |                  |
|-----------------------|------------------|------------------|----------------------|------------------|
| Drilling <sup>2</sup> | Diameter<br>(mm) | Speed<br>(m/min) | Feed ex.<br>(mm/rev) | Rpm<br>(rev/min) |
| Steel Twist Drills    | 1                | 13–16            | 0.065                | 4100-4900        |
|                       | 3                | 19–22            | 0.13                 | 2000–2300        |
|                       | 5                | 22–26            | 0.16                 | 1400–1650        |
|                       | 10               | 22-26            | 0.20                 | 700-830          |
|                       | 15               | 22–26            | 0.25                 | 470–560          |
|                       | 20               | 22–26            | 0.40                 | 350-420          |
|                       | 30               | 22–26            | 0.40                 | 230–290          |

2) HSS-5%Co

| •                                |                                        |                  |                      |               |                  |                    |               |
|----------------------------------|----------------------------------------|------------------|----------------------|---------------|------------------|--------------------|---------------|
|                                  |                                        | Carb             | ide Tooling          |               |                  | <b>HSS Tooling</b> |               |
| Other<br>machining<br>operations | Depth<br>of cut<br>or<br>width<br>(mm) | Speed<br>(m/min) | Feed ex.<br>(mm/rev) | Tool<br>Grade | Speed<br>(m/min) | Feed<br>(mm/rev)   | Tool<br>Grade |
| Cut-off                          | 1.5–7.0                                | 80–200           | 0.040–0.15           | M30           | 20–40            | 0.030–<br>0.080    | T15           |
| Tapping                          | -                                      | -                | _                    | -             | 3–35             | _                  | _             |
| Threading singel insert          | -                                      | 90–130           | _                    | M10-M30       | 3–35             | _                  | T15           |
| Forming                          | 7–50                                   | 40–130           | 0.040-0.12           | M10-M30       | 20–40            | 0.040-0.40         | T15           |

## Troubleshooting



#### Flank wea

For longer tool life – reduce cutting speed or use a harder insert.



#### Notch wear

Notch wear is a common wear mechanism when machining stainless steel. Increased cutting speed will reduce notch but increase flank wear. If possible, use an insert with smaller entering angle 60-80 degrees or variable cutting depth or softer insert grade.



#### Built-up edge (B.U.E.)

Built-up edge occurs when the cutting speed is too low and the stainless steel tends to stick to the tool (in milling the chips stick to the tool). To avoid – increase cutting speed or use another coating.



#### Plastic deformation

To avoid – reduce either cutting speed, feed or use a harder insert.



#### Long chips

To avoid – increase feed or use an insert with smaller chip breaker.



# Fagersta Stainless Wire Rod and Drawn Wire

Fagersta Stainless, located in Sweden, is focused in producing stainless steel wire rod and wire.

Fagersta Stainless has a history that started in the 16th century, and was established in current form in 1984. Wire rod production started 1884, and it was probably the first mill in the world to roll stainless wire rod in 1921. Fagersta Stainless is specialised in thinner dimensions of wire rod and drawn wire. Key customers are producing welding wire, spring wire, cold-heading products and wheel spokes.

Fagersta has become successful in some niche areas where the properties of the wire and wire rod are developed exclusively for certain applications. With long-term customer relationships, together with some of the leading actors, we develop our products with high quality according to customer requirements.

We have high capacity and highly trained commercial and technical staff to support the market. Our products are sold worldwide directly from Sweden or via a network of representatives.

Our goal is to be recognized in the market as the most responsive specialist rod supplier with industry-leading customer service backed by a flexible, high quality manufacturing program.



## Key benefits

- Product quality
- Delivery reliability
- Expert technical advice
- Easy to deal with



# Wire rod and drawn wire dimensions



#### Wire rod

5 – 18 mm (0.197" – 0.709") in increments of 0.5 mm (0.020").

MOQ for standard steel grades is 3 ton Coil weight is 1 000 kg



#### Drawn wire

1.50 – 16.00 mm (0.059" – 0.630") h9 according to EN 10278 Min MOQ is 1 ton Coil weight 250 – 1 000 kg



To get best possible properties, following parameters are important:

- Tight chemistry control
- Mechanical properties and deformation hardening
- Corrosion properties

- Surface finish
- Dimension tolerances

# Wire rod conditions and packaging

#### Conditions



Direct cooling (DK) ASTM 10-13

Packaging options



"In line"annealing (DST) ASTM 5-8



Batch Annealed (SG) ASTM 3-6

## and packaging Conditions

- Stearate
- Oil / Grease
- Metal

#### Packaging

- Coils on pallet
- Coil with tube carrier

Spool

- Compact coil on pallet
- Coil with bobbin

#### Oil / Grease

- FAGERSTA XFO-coating (Oil)
- FAGERSTA XFH-coating (Grease)

#### Metal

- FAGERSTA Cu-coating (Copper)
- FAGERSTA Ni-coating (Nickel)

## Wire rod steel grades

- Ferritic Grades
- Austenitic Grades
- Duplex
- PH

## Drawn wire steel grades

Drawn wire conditions

- Ferritic Grades
- Austenitic Grades
- Duplex
- PH

## Wire rod and drawn wire heat sizes

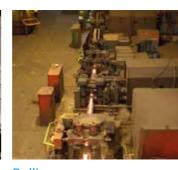
Depending on grade, our heat sizes are:

Appr. 8 tonnes (17 000 lbs)

- Appr. 60 tonnes (132 000 lbs)
- Appr. 120 tonnes (265 000 lbs)

# Ensuring quality with end-to-end production




Melting shop Consistently produced high quality semis are made at SMACC in 130-tonne melts.



Billet feedstock
The majority of the feedstock comes from our own melting shop.

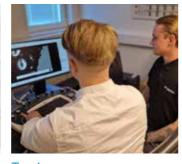


Reheating furnace Accurately controlled, two-stage reheating minimizes surface scaling.



Rolling
A highly responsive digital control system tracks the rod through the mill to ensure quality.




Coil forming
Wire rod of up to 18 mm
is coiled on a laying head.



Annealing
The annealing furnace
softens the rod to
increase its ductility for
further processing.



Pickling
Scale is removed from
the hot rolled surface
using salt bath and acid
treatment.



Testing
Samples from production
stages are tested for
surface defects, grain
size, and tensile strength.

## Fagersta Stainless wire rod and drawn wire mill

#### Quality assurances

Our manufacturing programme is supported by an in-house product inspection and testing programme in addition to a technical team with extensive experience. Our rod and drawn wire production is accredited to recognized international standards, including:

- ISO 9001
- ISO 14001
- ISO 50001 (Energy Management System)



### WIRE ROD FOR WELDING

Thanks to a company history starting already 1873, Fagersta Stainless belongs to one of the world leading producers of stainless wire rod and wire. With customized chemistries the products fulfill everything from simple to high demanding applications.

### STANDARD STEEL GRADES FOR WELDING

Our grades have tight chemistries and therefore equal properties from delivery to delivery.

We recommend following of our standard grades:

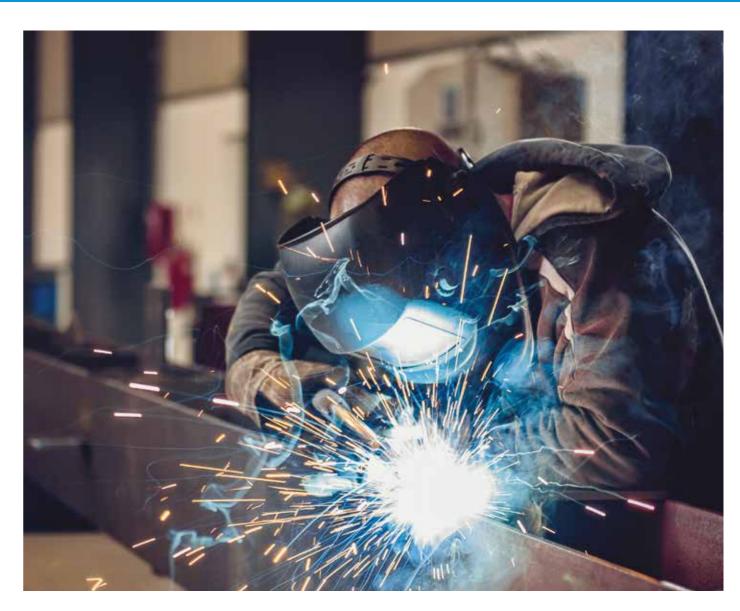
#### **OPTIMUM WIRE ROD FOR WELDING**

To get best possible properties for welding wire rod, these parameters are important:

- Tight chemistry for identical properties
- Mechanical properties and deformation hardening
- Corrosion properties
- Surfaces
- Dimension tolerances

| Grade  | Marcegaglia  | Fagersta | EN                   | AS1       | ГМ     | PRE | CIAIL | 1     | ypical che | emical cor | mposition | , % by ma | ass    |
|--------|--------------|----------|----------------------|-----------|--------|-----|-------|-------|------------|------------|-----------|-----------|--------|
| family | name         |          | EN                   | TYPE      | UNS    | PRE | CWH   | С     | Cr         | Ni         | Мо        | N         | Others |
| F      | 409/4512     | R108.10  | -                    | 409CB     | -      | 11  | -     | 0.03  | 11.3       | 0.35       | -         | -         | Nb     |
| F      | 409Ti/4512   | R109.11  | 1.4512               | 409TI     | -      | 11  | -     | 0.025 | 11.3       | -          | -         | -         | -      |
| F      | 430Nb/4511   | R258.10  | 1.4511               | 430Nb     | -      | 19  | -     | 0.01  | 18.2       | -          | -         | -         | -      |
| F      | 430NbTi/4016 | R258.13  | 18 LNbTi             | -         | -      | 18  | -     | 0.015 | 18.2       | -          | -         | -         | Ti, Nb |
| Α      | 4551         | R358.16  | 1.4551 / 19 9 NbSi   | 347Si     | S34788 | 21  | -     | 0.035 | 19.4       | 9.8        | -         | 0.04      | Nb     |
| Α      | 4551         | R358.22  | 19 9 Nb              | 347       | -      | 20  | -     | 0.05  | 19.6       | 9.2        | -         | 0.03      | Nb     |
| Α      | 347H/4550    | R358.22  | -                    | 347H      | -      | 20  | -     | 0.05  | 19.6       | 9.2        | -         | 0.03      | Nb     |
| Α      | 308L/4316    | R366.10  | 1.4316 / 19 9 L      | 308L      | S30883 | 21  | -     | 0.01  | 19.7       | 10.2       | -         | 0.05      | S      |
| Α      | 308LSi/4316  | R366.72  | 1.4316 / 19 9 Lsi    | 308L      | S30888 | 21  | -     | 0.015 | 19.85      | 10.35      | -         | 0.065     | S      |
| Α      | 318/4576     | R448.11  | 1.4576 / 19 12 3 Nb  | 318       | -      | 29  | -     | 0.04  | 19.3       | 11.6       | 2.6       | 0.04      | S      |
| Α      | 318Si/4576   | R448.12  | 19 12 3 NbSi         | -         | -      | 28  | -     | 0.035 | 18.9       | 11.8       | 2.7       | 0.05      | S      |
| Α      | 316L/4430    | R466.10  | 19 12 3 L            | 316L      | -      | 28  | -     | 0.01  | 18.3       | 12.2       | 2.6       | 0.04      | S      |
| Α      | 316LSi/4430  | R466.20  | 1.4430 / 19 12 3 LSi | 316LSi    | S31688 | 28  | -     | 0.01  | 18.3       | 11.8       | 2.6       | 0.04      | -      |
| Α      | 317L         | R476.25  | 18 15 3 L            | 317L      | -      | 31  | -     | 0.01  | 18.8       | 13.7       | 3.6       | 0.05      | S      |
| Α      | 16–8–2       | R516.30  | 42584                | -         | -      | 20  | -     | 0.05  | 15.5       | 8.5        | 1.2       | 0.04      | -      |
| Α      | 307L         | R526.10  | 18 8 Mn              | 307       | -      | 17  | -     | 0.035 | 17.3       | 7.8        | -         | -         | -      |
| Α      | 307Si        | R526.70  | 18 8 SiMn            | 307       | -      | 18  | -     | 0.08  | 18.2       | 8          | -         | -         | S      |
| D      | 2209         | R646.21  | 22 9 3 N L           | 2209      | S39209 | 35  | -     | 0.01  | 23         | 8.75       | 3         | 0.16      | Al     |
| D      | 2594         | R647.73  | 25 9 4 NL            | 2594      | -      | 42  | -     | 0.01  | 25.1       | 9.5        | 4         | 0.25      | Al     |
| D      | 2307         | R656.20  | 23 7 NL              | 2307      | -      | 27  | -     | 0.01  | 24         | 8          | -         | 0.14      | -      |
| D      | 2504         | R656.30  | 25 4                 | -         | -      | 26  | -     | 0.07  | 25.3       | 4.5        | -         | -         | -      |
| D      | 312          | R656.70  | 29 9                 | 312       | -      | 32  | -     | 0.1   | 30.35      | 9.2        | -         | 0.055     | Al     |
| Α      | 309L/4332    | R806.20  | 1.4332 / 23 12 L     | 309L      | S30983 | 25  | -     | 0.01  | 23.5       | 13.7       | -         | 0.08      | S      |
| Α      | 309LSi/4332  | R806.24  | 1.4332 / 23 12 L Si  | 309L      | S30988 | 25  | -     | 0.02  | 23.3       | 13.8       | -         | 0.12      | S      |
| Α      | 309LSi/4332  | R806.42  | 1.4332 / 23 12 L Si  | 309L      | S30988 | 25  | -     | 0.015 | 23.5       | 13.6       | -         | 0.08      | -      |
| Α      | 309LNb4332   | R806.45  | 23 12 L Nb           | 309LNb    | -      | 25  | -     | 0.01  | 23.9       | 12.6       | -         | 0.04      | Al, Nb |
| Α      | 309Si/4332   | R806.72  | 22 12 H              | -         | -      | 23  | -     | 0.09  | 23.3       | 12.75      | -         | 0.055     | -      |
| Α      | 309LMo/4459  | R816.10  | 23 12 2 L            | -         | -      | 31  | -     | 0.01  | 21.45      | 15         | 2.7       | 0.06      | -      |
| Α      | 310S/4845    | R826.70  | 25 20                | 310       | -      | 26  | -     | 0.12  | 26         | 20.8       | -         | -         | -      |
| Α      | 904L         | R840.70  | 20 25 5 C L          | 385       | N08904 | 36  | -     | 0.01  | 20         | 25         | 4.5       | 0.05      | Cu     |
| Α      | Alloy 825    | R906.10  | -                    | Alloy 825 | -      | 33  | -     | 0.01  | 22.3       | 43         | 3.2       | -         | Cu, Ti |

Grade families: F = ferritic, A = austenitic, D = duplex


#### **MECHANICAL PROPERTIES AND DEFORMATION HARDENING**

Depending on end-product's shape and required tensile strength, the wire rod should have specific ductility (formability) for the cold heading process and specific level of deformation hardening. Following methods of measurement are used regarding deformation hardening:

- **CWH-factor** "Cold Work Hardening Factor", a matrix consisting of C, Cr and Ni contents. The factor varies between 80 150 and increases with increasing deformation hardening in the steel.
- **Md30**: the temperature (°C) at which 30% true elongation (about 25% area reduction) makes 50% of the austenitic phase transform to deformation martensite. A higher temperature means higher deformation hardening in the steel.

#### CORROSION

PRE (Pitting Resistance Equivalent =  $Cr + 3.1 \times Mo + 25 \times N$ ) is a factor comparing properties of different chemistries with regards to pitting and crevice corrosion in corrosive environments. A higher value means better resistance. In the table above, PRE is shown for the grades we recommend for welding.



#### **SURFACES**

Direct cooling (DK)
 "In line"-annealing (DST)
 Pit furnace (SG)
 ASTM 10-13
 ASTM 5-8
 ASTM 3-6

Our standard procedure is to supply the wire rod in pickled condition.

#### **DIMENSIONS**

**Standard**: 5 – 18 mm (.197" - .709") in increments of 0.5 mm (.020") (MOQ:s for some dimensions)

**Tolerance**: 5.0 – 10.0 +/-0.15 >10.0 – 18.0 +/-0.20

Ovality: max 60% of the total tolerance span

Surface classes: Class 3 is the standard class which has a max defect depth of 0.10 mm for dimensions  $\leq 10 \text{ mm}$  and 1% of the diameter for dimensions > 10 mm. Welding rod has class 2 (max 0.20).

#### **PACKAGING METHODS**

Coil weight: appr. 1000 kg - Outer diameter: max 1250 mm - Inner diameter: max 950 mm

### WIRE ROD FOR HIGH TEMPERATURE

Thanks to a company history starting already 1873, Fagersta Stainless belongs to one of the world leading producers of stainless wire rod and wire. With customized chemistries the products fulfill everything from simple to high demanding applications.

## STANDARD STEEL GRADES FOR COLD HEADING

Our grades have tight chemistries and therefore equal properties from delivery to delivery.

We recommend following of our standard grades:

#### OPTIMUM

To get best possible properties for cold heading wire rod, these parameters are important:

- Tight chemistry for identical properties
- Mechanical properties and deformation hardening
- Corrosion properties
- Surfaces
- Dimension tolerances

| Grade  | Marcegaglia    | Fagersta | EN     | AS    | ТМ     | DDE | CVAILL |       | Typical ch | nemical cor | mposition, | % by mass | ;      |
|--------|----------------|----------|--------|-------|--------|-----|--------|-------|------------|-------------|------------|-----------|--------|
| family | name           |          | EN     | TYPE  | UNS    | PRE | CWH    | С     | Cr         | Ni          | Мо         | N         | Others |
| F      | 409/4512       | R108.10  | -      | 409CB | -      | 11  | -      | 0.03  | 11.3       | -           | -          | -         | Nb     |
| F      | 409Ti/4512     | R109.11  | 1.4512 | 409TI | -      | 11  | -      | 0.015 | 11.3       | -           | -          | -         | -      |
| F      | 430/4016       | R250.11  | 1.4016 | 430   | S43000 | 16  | -      | 0.015 | 16.4       | -           | -          | -         | -      |
| F      | 430L/4016      | R258.10  | 18 LNB | -     | -      | 18  | -      | 0.01  | 18.2       | -           | -          | -         | Cu     |
| Α      | 304L/4306      | R350.11  | 1.4306 | 304L  | S30403 | 18  | -      | 0.02  | 18.3       | 10.3        | -          | -         | -      |
| Α      | 304/4301       | R350.19  | 1.4301 | 304   | S30400 | 18  | -      | 0.03  | 18.2       | 8.2         | -          | -         | -      |
| Α      | 304L/4307      | R350.43  | 1.4307 | 304L  | S30403 | 20  | -      | 0.015 | 18.3       | 8.6         | -          | -         | -      |
| Α      | 305/4303       | R390.21  | 1.4303 | 305   | S30500 | 20  | -      | 0.01  | 17.7       | 11.2        | -          | -         | -      |
| Α      | 316L/4404      | R425.10  | 1.4404 | 316L  | S31603 | 24  | -      | 0.015 | 16.8       | 11.2        | 2.1        | -         | -      |
| Α      | 316L/4436      | R440.10  | 1.4436 | 316   | S31600 | 25  | -      | 0.02  | 16.8       | 11.6        | 2.6        | -         | -      |
| Α      | 316Cu/4578     | R545.11  | 1.4578 | 316Cu | -      | 24  | -      | 0.02  | 17         | 10.8        | 2.2        | -         | Cu     |
| PH     | Alloy 286/4980 | R569.10  | 1.4980 | A-286 | S66286 | 18  | -      | 0.05  | 14.6       | 24.7        | 1.2        | -         | Al, Ti |
| PH     | Alloy 286/4980 | R569.60  | 1.4980 | A-286 | S66286 | 18  | -      | 0.05  | 14.6       | 24.7        | 1.2        | -         | Al, Ti |
| Α      | 304Cu/4567     | R575.21  | 1.4567 | 304Cu | S30430 | 19  | -      | 0.01  | 17.9       | 9.7         | -          | -         | Cu     |

Grade families: F = ferritic, A = austenitic, PH = precipitation hardening



#### MECHANICAL PROPERTIES AND DEFORMATION HARDENING

Depending on end-product's shape and required tensile strength, the wire rod should have specific ductility (formability) for the cold heading process and specific level of deformation hardening. Following methods of measurement are used regarding deformation hardening:

- $\bullet$  **CWH-Factor** "Cold Work Hardening Factor", a matrix consisting of C, Cr and Ni contents. The factor varies between 80 150 and increases with increasing deformation hardening in the steel.
- **Md30**: the temperature (°C) at which 30% true elongation (about 25% area reduction) makes 50% of the austenitic phase transform to deformation martensite. A higher temperature means higher deformation hardening in the steel.

#### **CORROSION**

PRE (Pitting Resistance Equivalent =  $Cr + 3.1 \times Mo + 25 \times N$ ) is a factor comparing properties of different chemistries with regards to pitting and crevice corrosion in corrosive environments. A higher value means better resistance. In the table above, PRE is shown for the grades we recommend for cold heading.

#### **SURFACES**

Direct cooling (DK)
 "In line"-annealing (DST)
 Pit furnace (SG)
 ASTM 10-13
 ASTM 5-8
 ASTM 3-6

Our standard procedure is to supply the wire rod in pickled condition.

#### **DIMENSIONS**

**Standard**: 5 - 18 mm (.197" - .709") in increments of 0.5 mm (.020") (MOQ:s for some dimensions) **Tolerance**: 5.0 - 10.0 +/-0.15

>10.0 – 18.0 +/-0.20 **Ovality**: max 60% of the total tolerance span

**Surface classes**: Class 3 is the standard class which has a max defect depth of 0.10 mm for dimensions  $\leq$  10 mm and 1% of the diameter for dimensions > 10 mm. Welding rod has class 2 (max 0.20).

#### **PACKAGING METHODS**

 $\textbf{Coil weight: appr. } 1000 \ kg \textbf{ - Outer diameter:} \ max \ 1250 \ mm \textbf{ - Inner diameter:} \ max \ 950 \ mm$ 

Thanks to a company history starting already 1873, Fagersta Stainless belongs to one of the world leading producers of stainless wire rod and wire. With customized chemistries the products fulfill everything from simple to high demanding applications.

## STANDARD STEEL GRADES FOR HIGH TEMPERATURE

Our grades have tight chemistries and therefore equal properties from delivery to delivery.

We recommend following of our standard grades:

#### OPTIMUM WIRE ROD FOR HIGH TEMPERATURE

To get best possible properties for high temperatures, these parameters are important:

- Tight chemistry for identical properties
- Mechanical properties and deformation hardening
- Corrosion properties
- Surfaces
- Dimension tolerances

| Grade  | Marcegaglia      | Fagersta | EN        | AS    | TM     |       | Typical | chemical con | nposition, % | by mass |           |
|--------|------------------|----------|-----------|-------|--------|-------|---------|--------------|--------------|---------|-----------|
| family | name             |          |           | TYPE  | UNS    | С     | Cr      | Ni           | Мо           | N       | Others    |
| F      | 409/4512         | R108.10  | -         | 409CB | -      | 0.03  | 11.3    | -            | -            | -       | Nb        |
| F      | 409Ti/4512       | R109.11  | 1.4512    | 409TI | -      | 0.015 | 11.3    | -            | -            | -       | Ti        |
| Α      | 4828             | R323.10  | 1.4828    | -     | -      | 0.045 | 19.3    | 11.7         | -            | 0.03    | -         |
| Α      | 4835             | R327.10  | 1.4835    | -     | S30815 | 0.075 | 21      | 10.2         | -            | 0.16    | REM       |
| PH     | Alloy 286 / 4980 | R569.60  | 1.498     | A-286 | S66286 | 0.05  | 14.6    | 24.7         | 1.2          | -       | Al, Ti, V |
| Α      | 310S/4845        | R820.10  | 1.4845    | 3105  | S31008 | 0.045 | 24.7    | 19.4         | -            | -       | -         |
| Α      | 314/4841         | R823.11  | -         | 314   | S31400 | 0.03  | 23.5    | 19.4         | -            | -       | -         |
| Α      | 314/4841         | R823.13  | 1.4841    | 314   | S31400 | 0.01  | 24.3    | 20.7         | -            | -       | -         |
| Α      | 310S/4845        | R826.70  | 25 20 310 | -     | -      | 0.12  | 25.9    | 20.8         | -            | -       | -         |
| Α      | 904L             | R840.70  | 1.4539    | 904L  | N08904 | 0.01  | 20      | 25           | 4.5          | 0.05    | Cu        |
| Α      | 330/4886         | R860.13  | 1.4886    | 330   | N08330 | 0.01  | 18.5    | 34.5         | -            | -       | -         |
| Α      | 330Nb            | R868.11  | 1.4864    | 330Cb | N08330 | 0.015 | 19.5    | 34.5         | -            | -       | Nb        |

Grade families: F = ferritic, A = austenitic, PH = precipitation hardening



#### MECHANICAL PROPERTIES AND DEFORMATION HARDENING

Depending on end-product's shape and required tensile strength, the wire rod should have specific ductility (formability) for the cold heading process and specific level of deformation hardening. Following methods of measurement are used regarding deformation hardening:

- **CWH-Factor** "Cold Work Hardening Factor", a matrix consisting of C, Cr and Ni contents. The factor varies between 80 150 and increases with increasing deformation hardening in the steel.
- **Md30**: the temperature (°C) at which 30% true elongation (about 25% area reduction) makes 50% of the austenitic phase transform to deformation martensite. A higher temperature means higher deformation hardening in the steel.

#### CORROSION

PRE (Pitting Resistance Equivalent =  $Cr + 3.1 \times Mo + 25 \times N$ ) is a factor comparing properties of different chemistries with regards to pitting and crevice corrosion in corrosive environments. A higher value means better resistance. In the table above, PRE is shown for the grades we recommend for high temperatures.

#### **SURFACES**

Direct cooling (DK) ASTM 10-13
 "In line"-annealing (DST) ASTM 5-8
 Pit furnace (SG) ASTM 3-6

Our standard procedure is to supply the wire rod in pickled condition.

#### **DIMENSIONS**

**Standard**: 5 – 18 mm (.197" - .709") in increments of 0.5 mm (.020")

(MOQ:s for some dimensions) **Tolerance**: 5.0 – 10.0 +/-0.15
>10.0 – 18.0 +/-0.20

Ovality: max 60% of the total tolerance span

**Surface classes:** Class 3 is the standard class which has a max defect depth of 0.10 mm for dimensions  $\leq$  10 mm and 1% of the diameter for dimensions > 10 mm. Welding rod has class 2 (max 0.20).

#### **PACKAGING METHODS**

Coil weight: appr. 1000 kg - Outer diameter: max 1250 mm - Inner diameter: max 950 mm

### **WIRE ROD IN DUPLEX**

Thanks to a company history starting already 1873, Fagersta Stainless belongs to one of the world leading producers of stainless wire rod and wire. With customized chemistries the products fulfill everything from simple to high demanding applications.

### STANDARD STEEL GRADES FOR SPRINGS

Our grades have tight chemistries and therefore equal properties from delivery to delivery.

We recommend following of our standard grades:

#### **OPTIMUM WIRE ROD FOR SPRINGS**

To get best possible properties for spring wire rod, these parameters are important:

- Tight chemistry for identical properties
- Mechanical properties and deformation hardening
- Corrosion properties
- Surfaces
- Dimension tolerances

| Grade  | Marcegaglia | Fagersta | EN     | AS   | тм     | PRE | CWH   |      | Typical cl | nemical cor | mposition, | % by mass |        |
|--------|-------------|----------|--------|------|--------|-----|-------|------|------------|-------------|------------|-----------|--------|
| family | name        |          | EIN    | TYPE | UNS    | PRE | CVVII | С    | Cr         | Ni          | Мо         | N         | Others |
| А      | 321/4541    | R359.10  | 1.4541 | 321  | S32100 | 19  | -     | 0.03 | 17.8       | 9.2         | -          | -         | Ti     |
| А      | 302/4310    | R320.17  | 1.431  | 302H | S30200 | 20  | -     | 0.07 | 18.35      | 8.1         | -          | 0.04      | -      |
| А      | 316/4401    | R420.18  | 1.4401 | 316  | S31600 | 24  | -     | 0.05 | 16.8       | 10.7        | 2.1        | -         | -      |
| PH     | 17–7PH      | R560.21  | 1.4568 | 631  | S17700 | -   | -     | 0.08 | 16.5       | 7.65        | -          | -         | Al     |

Grade families: A = austenitic. PH = precipitation hardening



#### **MECHANICAL PROPERTIES AND DEFORMATION HARDENING**

Depending on end-product's shape and required tensile strength, the wire rod should have specific ductility (formability) for the cold heading process and specific level of deformation hardening. Following methods of measurement are used regarding deformation hardening:

- **CWH-factor** "Cold Work Hardening Factor", a matrix consisting of C, Cr and Ni contents. The factor varies between 80 150 and increases with increasing deformation hardening in the steel.
- **Md30**: the temperature (°C) at which 30% true elongation (about 25% area reduction) makes 50% of the austenitic phase transform to deformation martensite. A higher temperature means higher deformation hardening in the steel.

#### CORROSION

PRE (Pitting Resistance Equivalent =  $Cr + 3.1 \times Mo + 25 \times N$ ) is a factor comparing properties of different chemistries with regards to pitting and crevice corrosion in corrosive environments. A higher value means better resistance. In the table above, PRE is shown for the grades we recommend for springs.

#### **SURFACES**

Direct cooling (DK)
 "In line"-annealing (DST)
 Pit furnace (SG)
 ASTM 10-13
 ASTM 5-8
 ASTM 3-6

Our standard procedure is to supply the wire rod in pickled condition.

#### **DIMENSIONS**

**Standard**: 5 – 18 mm (.197" - .709") in increments of 0.5 mm (.020")

(MOQ:s for some dimensions)

**Tolerance**: 5.0 – 10.0 +/-0.15 >10.0 – 18.0 +/-0.20

**Ovality**: max 60% of the total tolerance span

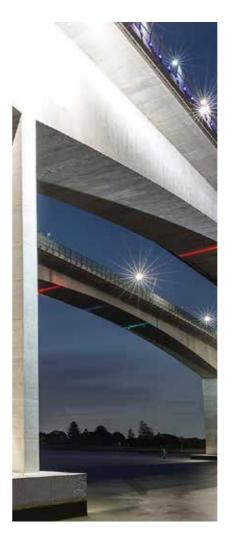
**Surface classes:** Class 3 is the standard class which has a max defect depth of 0.10 mm for dimensions  $\leq$  10 mm and 1% of the diameter for dimensions > 10 mm. Welding rod has class 2 (max 0.20).

#### **PACKAGING METHODS**

Coil weight: appr. 1000 kg - Outer diameter: max 1250 mm - Inner diameter: max 950 mm

Thanks to a company history starting already 1873, Fagersta Stainless belongs to one of the world leading producers of stainless wire rod and wire. With customized chemistries the products fulfill everything from simple to high demanding applications.

#### **OUR DUPLEX STEEL GRADES**


We offer a wide range of Duplex grades for many different applications i.e. cold heading, welding and bright wire for general applications. Our grades have tight chemistries and therefore equal properties from delivery to delivery.

#### **CHARACTERISTIC PROPERTIES FOR DUPLEX STEEL**

Duplex steel is often characterized by:

- Good corrosion properties
- Good mechanical properties
- Good fatigue properties
- High resistance against abrasion
- Good welding properties

| Grade  | Marcegaglia | Fagersta | EN     | ASTM       |     | PRE |       | Typica | l chemical co | mposition, <sup>o</sup> | % by mass |                |
|--------|-------------|----------|--------|------------|-----|-----|-------|--------|---------------|-------------------------|-----------|----------------|
| family | name        |          | EIN    | TYPE / AWS | UNS | PRE | С     | Cr     | Ni            | Мо                      | N         | Others         |
| D      | 2101/4162   | R 617.10 | 1.4162 | 2101       | -   | 28  | 0.030 | 21.50  | 1.50          | 0.30                    | 0.220     | 0.7 Si 5.0Mn   |
| D      | 2304/4362   | R 630.21 | 1.4362 | 2304       | -   | 26  | 0.015 | 22.50  | 4.70          | 0.25                    | 0.110     | 0.45Si 0.95 Mn |
| D      | 2209/4662   | R 646.21 | 1.4662 | 2209       | -   | 37  | 0.01  | 23.00  | 8.75          | 3.15                    | 0.160     | Al             |
| D      | 2205/4462   | R 647.70 | 1.4462 | 2205       | -   | 37  | 0.017 | 22.20  | 5.20          | 3.20                    | 0.180     | Al             |
| D      | 312         | R 656.70 | -      | 312 / 29-9 | -   | 32  | 0.100 | 30.35  | 9.20          | -                       | 0.055     | Al             |



#### **MECHANICAL PROPERTIES AND DEFORMATION HARDENING**

Depending on end-product's shape and required tensile strength, the wire rod should have specific ductility (formability) for the cold heading process and specific level of deformation hardening.

Following methods of measurement are used regarding deformation hardening:

- **CWH-Factor** "Cold Work Hardening Factor", a matrix consisting of C, Cr and Ni contents. The factor varies between 80 150 and increases with increasing deformation hardening in the steel.
- **Md30**: the temperature (°C) at which 30% true elongation (about 25% area reduction) makes 50% of the austenitic phase transform to deformation martensite. A higher temperature means higher deformation hardening in the steel.

#### CORROSION

PRE (Pitting Resistance Equivalent =  $Cr + 3.1 \times Mo + 25 \times N$ ) is a factor comparing properties of different chemistries with regards to pitting and crevice corrosion in corrosive environments. A higher value means better resistance. In the table above, PRE is shown for the grades we recommend for our Duplex grades.

#### **SURFACES**

Direct cooling (DK)
 "In line"-annealing (DST)
 Pit furnace (SG)
 ASTM 10-13
 ASTM 5-8
 ASTM 3-6

Our standard procedure is to supply the wire rod in pickled condition.

#### **DIMENSION**

**Standard**: 5 - 18 mm (.197" - .709") in increments of 0.5 mm (.020").

(MOQ:s for some dimensions)

**Tolerance**: 5.0 – 10.0 +/-0.15 >10.0 – 18.0 +/-0.20

Ovality: max 60% of the total tolerance span

**Surface classes:** Class 3 is the standard class which has a max defect depth of 0.10 mm for dimensions  $\leq$  10 mm and 1% of the diameter for dimensions > 10 mm. Welding rod has class 2 (max 0.20).

#### **PACKAGING METHODS**

Coil weight: appr. 1000 kg - Outer diameter: max 1250 mm - Inner diameter: max 950 mm

Thanks to a company history starting already in 1873, Fagersta Stainless is one of the world leading producers of stainless steel wire rod and wire. With customized chemistries, the products fulfill everything from simple to high demanding applications.

#### WHAT CAN WE OFFER?

#### **Services:**

- Material directly from stock
- Optimal packaging solutions to secure the wire quality and safe handling

#### **Product properties:**

- Tight chemistry to ensure product consistency
- Bright surfaces with high end surface smoothness
- High performance corrosion resistance
- Consistent and narrow mechanical properties and deformation hardening
- Optimal straightening and bending propertie

| Grade | Fagersta article | Dimension | Tolerance | Tensile Strength range | Packing Methods      |
|-------|------------------|-----------|-----------|------------------------|----------------------|
| 304   | DF100178         | 2.50      | +0/-0.03  | 800-1000               | Coil 250 kg          |
| 304   | DF100174         | 3.00      | +0/-0.03  | 750-950                | Coil 500 kg          |
| 304   | DF100184         | 3.50      | +0/-0.03  | 750-950                | Bobbin 500 kg        |
| 304   | DF100175         | 4.00      | +0/-0.03  | 800-1000               | Bobbin 500 kg        |
| 304   | DF013319         | 4.00      | +0/-0.03  | 800-1000               | Compact Coil 1000 kg |
| 304   | DF100197         | 5.00      | +0/-0.03  | 750-950                | Compact Coil 1000 kg |
| 304   | DF011876         | 6.00      | +0/-0.03  | 850-1100               | Compact Coil 1000 kg |
| 304   | DF100189         | 7.00      | +0/-0.03  | 850-1100               | Compact Coil 1000 kg |
| 304   | DF100185         | 8.00      | +0/-0.03  | 700-900                | Compact Coil 500 kg  |
| 304   | DF013046         | 10.00     | +0/-0.03  | 750-900                | Coil 1000 kg         |
| 304   | DF014118         | 12.00     | +0/-0.04  | 700-900                | Coil 1000 kg         |
| 316L  | DF100168         | 2.00      | +0/-0.03  | 800-1000               | Coil 250 kg          |
| 316L  | DF100186         | 2.50      | +0/-0.03  | 800-1000               | Coil 250 kg          |
| 316L  | DF100147         | 3.00      | +0/-0.03  | 800-1000               | Coil 250 kg          |
| 316L  | DF100195         | 3.50      | +0/-0.03  | 800-1000               | Coil 1000 kg         |
| 316L  | DF014531         | 4.00      | +0/-0.03  | 750-950                | Bobbin 500 kg        |
| 316L  | DF013363         | 4.00      | +0/-0.03  | 750-950                | Compact Coil 1000 kg |
| 316L  | DF011602         | 5.00      | +0/-0.03  | 750-950                | Compact Coil 1000 kg |
| 316L  | DF100151         | 6.00      | +0/-0.03  | 750-950                | Compact Coil 1000 kg |
| 316L  | DF100193         | 7.00      | +0/-0.03  | 750-950                | Compact Coil 500 kg  |

#### **STOCK**

Due to a close cooperation with our meltshop, we have the possibility to offer customized chemistries on top of the grades we have in our standard range.

Fagersta Stainless produces bright forming wire in a large number of austenitic, ferritic and Duplex stainless steel grades, which makes it possible for us to supply material for applications in various environments.

We stock bright forming wire with dimensions of 1.50-12.00 mm.



#### **MECHANICAL PROPERTIES**

Our standard is to supply bright forming wire with a tensile strength of 750-1,100 N/mm<sup>2</sup>. By choosing a specific grade and how we process it in production, we can adjust the mechanical properties according to the customers wishes and therefore offer other intervals of tensile strength.

#### Tensile strength:

Customized levels

Max 40 N/mm<sup>2</sup> variation within a coil

Max 100 N/mm² variation from delivery to delivery

**Yield strength**: With customized chemistries we can control yield strength in relation to tensile strength.

#### CORROSION

PRE (Pitting Resistance Equivalent =  $Cr + 3.1 \times Mo + 25 \times N$ ) is a factor comparing properties of different chemistries with regards to pitting and crevice corrosion in corrosive environments. A higher value means better resistance. In the table above, PRE is shown for the grades we recommend for bright forming wire. Surface smoothness is also an important factor to prevent corrosion.

#### **BRIGHT SURFACES**

Products made from bright forming wire are often used in environments where there are high demands with regards to hygiene and aesthetical properties. It is therefore important that the surfaces are bright and free from defects, which also gives an optimum result at the electropolishing process. We have developed our own various bright drawing methods which makes it possible for us to offer everything from standard to high demanding surfaces:

- FAGERSTA Bright forming wire from stock
- FAGERSTA Royal, at request with higher tensile properties

#### **DIMENSIONS**

**Standard**: 1.50-12.00 mm (.059" - .472")

**Tolerance**: h9 according to EN 10278 1.50 - 3.00 + 0 / - 0.025 3.01 - 6.00 + 0 / - 0.030 6.01 - 12.00 + 0 / - 0.036

**Ovality**: max 50% of the total tolerance span

#### MAIN BRIGHT FORMING WIRE GRADES

| Grade      | Marcegaglia | Fagersta | EN     | ASTM | PRE | CWH |      | Typical | chemical | composit | ion, % by | mass   |
|------------|-------------|----------|--------|------|-----|-----|------|---------|----------|----------|-----------|--------|
| family     | name        |          |        | TYPE |     |     | С    | Cr      | Ni       | Мо       | N         | Others |
| Austenitic | 304/4301    | R350.19  | 1.4301 | 304  | 18  | 108 | 0.04 | 18.1    | 8.1      | -        | -         | -      |
| Austenitic | 316L/4404   | R425.10  | 1.4404 | 316L | 24  | 92  | 0.02 | 17      | 10.1     | 2.1      | -         | -      |

Other grades available on request, read more from leaflet on Fagersta standard steel grades.

#### **BRIGHT FORMING APPLICATIONS**

Products made from stainless steel bright forming wire are often used in environments where there are high demands with regards to hygiene and aesthetical properties. It is therefore important that the surfaces are bright and free from defects.

Industries with bright forming applications indlue automotive, aerospace, medical devices, electronics and electrical components, construction, jewelry, marine, food and beverage.

Fagersta Stainless has developed its own bright drawing methods which makes it possible to offer customers everything from standard to high demanding surfaces.













# **COLD HEADING WIRE**

VECTOR® SPOKE WIRE

Thanks to a company history starting already 1873, Fagersta Stainless belongs to one of the world leading producers of stainless wire rod and wire. With customized chemistries the products fulfill everything from simple to high demanding applications.

#### **IMPORTANT PROPERTIES FOR COLD HEADING**

To get best possible properties for cold heading, these parameters are important:

- Tight chemistry for identical properties
- Mechanical properties and deformation hardening
- Corrosion properties
- Surfaces and lubricants
- Dimension tolerances

#### STANDARD STEEL GRADES FOR COLD HEADING

Due to a close cooperation with our meltshop, we have the possibility to offer customized chemistries on top of the grades we have in our standard range. Our grades have tight chemistries and low slag concentrations and therefore equal properties from delivery to delivery. We recommend following standard grades:



| Grade  | Marcegaglia    | Fagersta | EN     | AS    | TM     | PRE | CWH |       | Typical ch | nemical cor | mposition, | % by mass |        |
|--------|----------------|----------|--------|-------|--------|-----|-----|-------|------------|-------------|------------|-----------|--------|
| family | name           |          | EIN    | TYPE  | UNS    | PRE | CWH | С     | Cr         | Ni          | Мо         | N         | Others |
| F      | 409/4512       | R108.10  | -      | 409CB | -      | 11  | -   | 0.03  | 11.3       | -           | -          | -         | Nb     |
| F      | 409Ti/4512     | R109.11  | 1.4512 | 409TI | -      | 11  | -   | 0.015 | 11.3       | -           | -          | -         | -      |
| F      | 430/4016       | R250.11  | 1.4016 | 430   | S43000 | 16  | -   | 0.015 | 16.4       | -           | -          | -         | -      |
| F      | 430L/4016      | R258.10  | 18 LNB | -     | _      | 18  | -   | 0.01  | 18.2       | -           | -          | -         | Cu     |
| Α      | 304L/4306      | R350.11  | 1.4306 | 304L  | S30403 | 18  | -   | 0.02  | 18.3       | 10.3        | -          | -         | -      |
| Α      | 304/4301       | R350.19  | 1.4301 | 304   | S30400 | 18  | -   | 0.03  | 18.2       | 8.2         | -          | -         | -      |
| Α      | 304L/4307      | R350.43  | 1.4307 | 304L  | S30403 | 20  | -   | 0.015 | 18.3       | 8.6         | -          | -         | -      |
| Α      | 305/4303       | R390.21  | 1.4303 | 305   | S30500 | 20  | -   | 0.01  | 17.7       | 11.2        | -          | -         | -      |
| Α      | 316L/4404      | R425.10  | 1.4404 | 316L  | S31603 | 24  | -   | 0.015 | 16.8       | 11.2        | 2.1        | -         | -      |
| Α      | 316L/4436      | R440.10  | 1.4436 | 316   | S31600 | 25  | -   | 0.02  | 16.8       | 11.6        | 2.6        | -         | -      |
| Α      | 316Cu/4578     | R545.11  | 1.4578 | 316Cu | -      | 24  | -   | 0.02  | 17         | 10.8        | 2.2        | -         | Cu     |
| PH     | Alloy 286/4980 | R569.10  | 1.4980 | A-286 | S66286 | 18  | -   | 0.05  | 14.6       | 24.7        | 1.2        | -         | Al, Ti |
| PH     | Alloy 286/4980 | R569.60  | 1.4980 | A-286 | S66286 | 18  | -   | 0.05  | 14.6       | 24.7        | 1.2        | -         | Al, Ti |
| Α      | 304Cu/4567     | R575.21  | 1.4567 | 304Cu | S30430 | 19  | -   | 0.01  | 17.9       | 9.7         | -          | -         | Cu     |

Grade families: F = ferritic, A = austenitic, PH = precipitation hardening

#### **MECHANICAL PROPERTIES**

We can control mechanical properties by choosing a specific grade and how we process it in production:

Tensile strength: Customized levels

Max 40 N/mm<sup>2</sup> variation within a coil - Max 100 N/mm<sup>2</sup> variation from delivery to delivery **Elongation**: With customized chemistries we can control elongation in relation to tensile strength.

PRE (Pitting Resistance Equivalent =  $Cr + 3.1 \times Mo + 25 \times N$ ) is a factor comparing properties of different chemistries with regards to pitting and crevice corrosion in corrosive environments. A higher value means better resistance. In the table above, PRE is shown for the grades we recommend for cold heading.

#### **SURFACES AND LUBRICANTS**

Different end treatments of wire rod combined with various processes during the drawing operations, we can reach the surface smoothness needed for different applications. With our collection of lubricants we can adjust the wire to the customers requirements regarding tool wear, product geometries etc:

Stearate:

 FAGERSTA XFK-coating Na and K based • FAGERSTA XFT-coating Synthetic FAGERSTA XFN-coating Na based

 FAGERSTA XF-coating Synthetic and Ca based

Oil / Grease: • FAGERSTA XFO-coating • FAGERSTA XFH-coating

Grease • FAGERSTA Cu-coating Copper FAGERSTA Ni-coating Nickel

**DIMENSIONS** 

**Standard**: 1.50-16.00 mm (.059" - .630") **Tolerance**: h9 according to EN 10278

+ 0 / - 0.025 1.50 - 3.00 + 0 / - 0.030 3.01 - 6.00 + 0 / - 0.036 6.01 - 10.00 10.01 – 16.00 + 0 / - 0.043

Ovality: max 50% of the total tolerance

#### **PACKAGING METHODS**

The wire is supplied in various packagings depending on the needs of the customer.

See separate leaflet.



Thanks to a company history starting already 1873, Fagersta Stainless belongs to one of the world leading producers of stainless wire rod and wire. With customized chemistries the products fulfill everything from simple to high demanding applications.

#### **IMPORTANT PROPERTIES FOR SPOKE WIRE**

After decades of close cooperation with our customers, we have developed spoke wire that fulfills the high requirements on the products properties:

- Tight chemistry which will ensure an excellent product consistency
- Consistent mechanical properties and well-defined deformation hardening
- Corrosion properties
- Surface conditions
- Dimension and tolerance

#### STANDARD STEEL GRADES FOR SPOKE WIRE

We recommend following standard grades:

| EN     | TYPE /<br>AWS | Fagersta | C %   | Si % | Mn % | Cr %  | Ni % | Mo % | N %   | TS<br>N/mm²<br>(ksi) | сwн | Md30<br>Nohara | PRE |
|--------|---------------|----------|-------|------|------|-------|------|------|-------|----------------------|-----|----------------|-----|
| 1.4301 | 304           | R 350.19 | 0.030 | 0.40 | 1.50 | 18.20 | 8.20 | 0.60 | 0.050 | 900-1200             | 108 | 9              | 20  |
| 1.4310 | 302           | R 300.20 | 0.052 | 0.45 | 1.20 | 17.40 | 8.25 | 0.60 | 0.050 | 900-1200             | 128 | 4              | 19  |

Other grades can be offered on demand

#### **VECTOR® SPOKE WIRE**

Our high-end spoke wire for racing and downhill bicycles. Vector® is our austenitic spoke wire collection. It is often used for top bike racing, triathlons, downhill racing and e-bikes. The reason for this is the unique forming properties which make it possible to reduce the center section of the spoke and therefore lower the weight, increase the strength, and fatigue resistance as well as flexibility. After reduction, the center section can also be pressed in a mold to form shapes that will improve aerodynamics. It is within this collection you can find one of the world's best spoke wires.

Our research has proven that a better adjusted chemistry will improve fatigue properties. Our A1 and A2 therefore have up to 25% better fatigue properties compared to standard 304 material.

|            | EN     | TYPE  | Fagersta | C %   | Si % | Mn % | Cr %  | Ni % | Mo % | N %   | TS<br>N/mm² (ksi)   | сwн | Md30<br>Nohara | PRE |
|------------|--------|-------|----------|-------|------|------|-------|------|------|-------|---------------------|-----|----------------|-----|
| VECTOR® A1 | 1.4310 | 302   | R 300.20 | 0.052 | 0.45 | 1.20 | 17.40 | 8.25 | 0.60 | 0.050 | 850-1300 (123-189)  | 128 | 4              | 19  |
| VECTOR® A2 | 1.4310 | 302Mo | R 300.38 | 0.1   | 1.4  | 1.6  | 17.2  | 8.2  | 0.7  | 0.03  | 1300-1500 (189-218) | 139 | -31            | 20  |

PRF = Cr + 3.1 \* Mo + 25 \* N

#### **MECHANICAL PROPERTIES**

We can control mechanical properties and surface conditions by choosing a specific grade and how we process it in production:

- Tensile strength: high tensile strength is needed. We supply in customized levels from 850-1500 N/mm2 (123-218 ksi).
- Forming properties: this is important in order to be able to reduce the spoke diameter in the middle section which will save weight, increase strength,flexibility and fatigue resistance. Straightening, bending and threading properties are also important basic requirements in order to make any type of spoke wire.
- Elongation: By testing and calculating Md30 we can control elongation in relation to tensile strengt.

PRE (= Pitting Resistance Equivalent =  $Cr + 3.1 \times Mo + 25 \times N$ ) is a factor comparing properties of different chemistries with regards to pitting and crevice corrosion in corrosive environments. A higher value means better resistance. In the table above, PRE is shown for the grades we recommend for spoke wire. Surface smoothness is also an important factor to prevent corrosion.

#### **BRIGHT SURFACES**

Spoke wire is often used in environments where there are high demands with regards to aesthetical properties. It is therefore important that the surfaces are bright and free from defects. We have developed our own various bright drawing methods which makes it possible for us to offer everything from standard to high demanding surfaces:

- FAGERSTA Vector®
- FAGERSTA Royal at request with higher mechanical properties

**DIMENSIONS** 

**Standard**: 1.50-5.00 mm (.059" - .197") **Tolerance**: h9 according to EN 10278 1.50 - 3.00 + 0 / - 0.025 + 0 / - 0.030 3.01 - 5.00

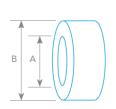
Ovality: max 50% of the total tolerance

#### **PACKAGING METHODS**

The wire is supplied in various packaging depending on the needs of the customer. See separate leaflet.



### Fagersta Stainless standard range of grades

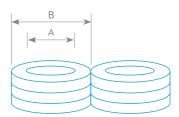

|                            |                              | ASTM Typical chemical composition, % by mas |                      | % by mass      | Application      |          |     |        |                |                |       |          |                                 |                 |          |         |                 |          |                   |        |
|----------------------------|------------------------------|---------------------------------------------|----------------------|----------------|------------------|----------|-----|--------|----------------|----------------|-------|----------|---------------------------------|-----------------|----------|---------|-----------------|----------|-------------------|--------|
| Grade<br>family            | Marcegaglia<br>name          | FAS                                         | EN                   | TYPE           | UNS              | PRE      | сwн | С      | Cr             | Ni             | Мо    | N        | Others                          | Cold<br>heading | Springs  | Welding | High<br>temper. | Duplex   | Bright<br>forming | Spokes |
|                            | 409/4512                     | R10810                                      | -                    | 409CB          | -                | 11       | -   | 0.03   | 11.3           | 0.35           | -     | -        | Nb                              | Х               |          | х       | Х               |          |                   |        |
| U                          | 409Ti/4512                   | R10911                                      | 1.4512               | 409TI          | -                | 11       | -   | 0.02   | 11.30          | -              | -     | -        | -                               | Х               |          | Х       | Х               | _        |                   |        |
| Ferritic                   | 430/4016                     | R25011                                      | 1.4016               | 430            | S43000           | 16       | -   | 0.02   | 16.40          | -              | -     | -        | -<br>NII.                       | Х               |          |         |                 | _        | Х                 |        |
| ட்                         | 430LNb                       | R25810                                      | 18 LNB               | 430Nb          | -                | 18       | -   | 0.01   | 18.20          | -              | -     | -        | Nb<br>T: NL                     | Х               |          | X       |                 | _        |                   |        |
|                            | 430NbTi/4016<br>446          | R25813<br>R27070                            | 18 LNbTi             | -<br>446       | -                | 18<br>26 | -   | 0.015  | 18.20<br>23.9  | -              | -     | 0.08     | Ti, Nb                          |                 |          | Х       |                 |          |                   |        |
|                            | 302/4310                     | R30020                                      | 1.4310               | 302            |                  | 19       | 128 | 0.052  | 17.4           | 8.25           | 0.60* | 0.05     | 0.45Si 1.2Mn                    |                 |          |         |                 | -        | x<br>x            | х      |
|                            | 302/4310                     | R30020                                      | 1.4310               | 302            | -                | 19       | 139 | 0.032  | 17.4           | 8.2            | 0.60* | 0.03     | 0.4531 1.21VIII<br>0.9Si 1.25Mn |                 |          |         |                 | $\dashv$ | ×                 | ^      |
|                            |                              |                                             | 1.4310 /             |                |                  |          |     |        |                |                |       |          | 0.731 1.2314111                 |                 |          |         |                 |          |                   |        |
|                            | 302/4310/304H/4948           | R32017                                      | 1.4948               | 302 / 304H     | S30200           | 20       | 130 | 0.07   | 18.35          | 8.10           | -     | 0.04     | -                               |                 | х        |         |                 |          | х                 |        |
|                            | 4828                         | R32310                                      | 1.4828               | -              | -                | -        | -   | 0.045  | 19.30          | 11.70          | -     | 0.03     | Si                              |                 |          |         | Х               | _        | Х                 |        |
|                            | 4835                         | R32710                                      | 1.4835               | -              | S30815           | 26       | -   | 0.08   | 21.00          | 10.20          | -     | 0.16     | REM                             |                 |          |         | Х               |          | Х                 |        |
|                            | 304L/4306                    | R35011                                      | 1.4306               | 304L           | S30403           | 18       | -   | 0.02   | 18.30          | 10.30          | -     | -        | -                               | Х               |          |         |                 | _        |                   |        |
|                            | 304/4301                     | R35019                                      | 1.4301               | 304            | S30400           | 18       | 108 | 0.03   | 18.20          | 8.20           | -     | -        |                                 | Х               |          |         |                 |          | Х                 | Х      |
|                            | 304L/4307                    | R35020                                      | 1.4307               | 304L           | 620402           | 20       | 90  | 0.02   | 18.5           | 9.75           | 0.60* | 0.030*   | 0.45Si 1.2Mn                    |                 |          |         |                 | _        | Х                 |        |
|                            | 304L/4307                    | R35043                                      | 1.4307<br>1.4551/19  | 304L           | S30403           | 20       | 93  | 0.02   | 18.30          | 8.60           | -     | -        | -                               | Х               |          |         |                 | _        | Х                 |        |
|                            | 4551                         | R35816                                      | 9 NbSi               | 347Si          | S34788           | 21       | -   | 0.04   | 19.40          | 9.80           | -     | 0.04     | Nb                              |                 |          | х       |                 |          |                   |        |
|                            | 347H/4550/4551               | R35822                                      | 19 9 Nb              | 347 / 347H     | -                | 20       | -   | 0.05   | 19.60          | 9.20           | -     | 0.03     | Nb                              |                 |          | х       |                 |          |                   |        |
|                            | 321/4541                     | R35910                                      | 1.4541               | 321            | S32100           | 19       | -   | 0.03   | 17.80          | 9.20           | -     | -        | Ti                              |                 | х        |         |                 |          |                   |        |
|                            | 308L/4316                    | R36610                                      | 1.4316/19<br>9 L     | 308L           | S30883           | 21       | -   | 0.01   | 19.70          | 10.20          | -     | 0.05     | S                               |                 |          | х       |                 |          | 1                 |        |
|                            | 3081 6:/4317                 |                                             | 1.4316/19            | 308L           | S30888           | 21       |     | 0.02   |                | 10.35          | _     | 0.07     | S                               |                 |          |         |                 | $\dashv$ |                   |        |
|                            | 308LSi/4316                  | R36672                                      | 9 Lsi                |                |                  |          |     |        | 19.85          |                |       |          |                                 |                 |          | Х       |                 | _        |                   |        |
|                            | 303/4305                     | R38030                                      | 1.4305               | 303            | -                | 19       | 132 | 0.06   | 17.20          | 8.10           | -     | 0.04     | S                               |                 |          |         |                 | _        | Х                 |        |
|                            | 305/4303                     | R39021                                      | 1.4303               | 305            | S30500           | 20       | 91  | 0.01   | 17.70          | 11.20          | -     | 0.030'   | -                               | Х               |          |         |                 | _        | Х                 |        |
|                            | 316/4401                     | R42018                                      | 1.4401               | 316            | S31600           | 24       | -   | 0.05   | 16.80          | 10.70          | 2.10  | -        | -                               |                 | Х        |         |                 |          |                   |        |
|                            | 316L/4404                    | R42510                                      | 1.4404               | 316L           | S31603           | 24       | -   | 0.02   |                | 11.20          | 2.10  | -        | -                               | Х               |          |         |                 | -        | Х                 |        |
|                            | 316L/4404                    | R42520                                      | 1.4404               | 316L           | -                | 24       | 95  | 0.02   | 16.70          | 10.10          | 2.07  | -        | -<br>T'                         |                 |          |         |                 | -        | Х                 |        |
|                            | 316Ti/4571                   | R42915                                      | 1.4571               | 316Ti          | -                | 24       | 94  | 0.01   | 16.60          | 10.6           | 2.1   | 0.030*   | Ti<br>o cc: 4 ccM-              |                 |          |         |                 |          | Х                 |        |
|                            | 316L/4436                    | R44010                                      | 1.4436<br>1.4576/19  | 316            | S31600           | 26       | -   | 0.02   | 16.80          | 11.60          | 2.60  | 0.050*   | 0.5Si 1.55Mn                    | Х               |          |         |                 | _        | х                 |        |
|                            | 318/4576                     | R44811                                      | 12 3 Nb              | 318            | -                | 29       | -   | 0.04   | 19.30          | 11.60          | 2.60  | 0.04     | S                               |                 |          | х       |                 |          |                   |        |
| iţi                        | 318Si/4576                   | R44812                                      | 19 12 3<br>NbSi      | -              | -                | 28       | -   | 0.04   | 18.90          | 11.80          | 2.70  | 0.05     | S                               |                 |          | х       |                 |          |                   |        |
| Austenitic                 | 316L/4430                    | R46610                                      | 19 12 3 L            | 316L           | -                | 28       | -   | 0.01   | 18.30          | 12.20          | 2.60  | 0.04     | S                               |                 |          | х       |                 |          |                   |        |
| Αſ                         | 316LSi/4430                  | R46620                                      | 1.4430/19            | 316LSi         | S31688           | 28       |     | 0.01   |                | 11.80          | 2.60  | 0.04     |                                 |                 |          |         |                 |          |                   |        |
|                            |                              |                                             | 12 3 LSi             |                |                  | -        | -   |        | 18.30          |                |       |          | -                               |                 |          | х       |                 | _        |                   |        |
|                            | 317L                         | R47625                                      | 18 15 3 L            | 317L           | -                | 31       | -   | 0.01   | 18.80          | 13.70          | 3.60  | 0.05     | S                               |                 |          | х       |                 | _        |                   |        |
|                            | 16–8–2                       | R51630                                      | 16 8 2               | -              | -                | 20       | -   | 0.05   | 15.50          | 8.50           | 1.20  | 0.04     | -                               |                 |          | х       |                 | _        |                   |        |
|                            | 204Cu/4597                   | R52510                                      | 1.4597               | 204Cu          | -                | 22       | -   | 0.050  | 16.30          | 1.8            | 0.30* | 0.20     | Mn                              |                 |          |         |                 |          | Х                 |        |
|                            | 307L                         | R52610                                      | 18 8 Mn              | 307            | -                | 17       | -   | 0.04   | 17.30          | 7.80           | -     | -        | -                               |                 |          | х       |                 | -        |                   |        |
|                            | 307Si                        | R52670                                      | 18 8 SiMn            | 307            | -                | 18       | -   | 0.08   | 18.20          | 8.00           | 2 20  | -        | S<br>C                          |                 |          | Х       |                 |          |                   |        |
|                            | 316Cu/4578<br>304Cu/4567     | R54511<br>R57521                            | 1.4578<br>1.4567     | 316Cu<br>304Cu | -<br>S30430      | 24<br>19 | -   | 0.02   | 17.00<br>17.90 | 10.80<br>9.70  | 2.20  | -        | Cu<br>Cu                        | X               |          |         |                 |          |                   |        |
|                            |                              |                                             | 1.4332/23            |                |                  |          | -   |        |                |                | -     |          |                                 | х               |          |         |                 | $\dashv$ |                   |        |
|                            | 309L/4332                    | R80620                                      | 12 L                 | 309L           | S30983           | 25       | -   | 0.01   | 23.50          | 13.70          | -     | 0.08     | S                               |                 |          | х       |                 |          |                   |        |
|                            | 309LSi/4332                  | R80624                                      | 1.4332/23<br>12 L Si | 309L           | S30988           | 25       | -   | 0.02   | 23.30          | 13.80          | -     | 0.12     | S                               |                 |          | х       |                 |          |                   |        |
|                            | 2001 C:/4222                 | D00442                                      | 1.4332/23            | 309L           | C20000           | 25       |     | 0.02   | 22 50          | 13.60          | _     | 0.00     |                                 |                 |          |         |                 |          |                   |        |
|                            | 309LSi/4332                  | R80642                                      | 12 L Si              |                | S30988           | 25       | -   | 0.02   |                |                |       | 0.08     | -                               |                 |          | Х       |                 | -        |                   |        |
|                            | 309LNb4332                   | R80645                                      | 23 12 L Nb           |                | -                | 25       | -   | 0.01   |                | 12.60          | -     | 0.04     | Al, Nb                          |                 |          | х       |                 | -        |                   |        |
|                            | 309Si/4332                   | R80672                                      | 22 12 H              | -              | -                | 23       | -   | 0.09   |                | 12.75          | - 270 | 0.06     | -                               |                 |          | X       |                 | +        |                   |        |
|                            | 309LMo/4459                  | R81610                                      | 23 12 2 L            | 2100           | - 521000         | 31       | -   | 0.01   |                | 15.00          |       | 0.06     | -                               |                 |          | Х       |                 | $\dashv$ |                   |        |
|                            | 310S/4845<br>314/4841        | R82010<br>R82311                            | 1.4845               | 310S<br>314    | S31008<br>S31400 | 26       | -   | 0.05   |                | 19.40<br>19.40 | - 0.6 | - 0.060* | -<br>2.7Si 1.75 Mn              |                 | Н        |         | X               | +        | X                 |        |
|                            | 314/4841                     | R82311                                      | 1.4841               | 314            | S31400<br>S31400 | 26       | -   | 0.03   |                | 20.70          | -     | 0.060^   | 2.751 1.75 IVIN                 |                 |          | H       | X<br>X          | -        | X                 |        |
|                            | 314/4841<br>310S/4845        | R82670                                      | 25 20                | 314            | 531400           | 26       | -   | 0.01   |                | 20.70          | -     | -        | -                               |                 | $\vdash$ | х       | x               | +        | Х                 |        |
|                            |                              |                                             | 20 25 5 C L          |                |                  |          |     |        |                |                |       |          |                                 |                 |          |         |                 | $\dashv$ |                   |        |
|                            | 904L                         | R84077                                      | / 1.4539             | 704L           | N08904           | 36       | -   | 0.01   | 20.00          |                | 4.50  | 0.05     | Cu                              |                 |          | х       | Х               | _        |                   |        |
|                            | 330/4886                     | R86013                                      | 1.4886               | 330            | N08330           | -        | -   | 0.01   | 18.50          | 34.5           | -     | -        | -                               |                 |          |         | х               | _        | х                 |        |
|                            | 330Nb                        | R86811                                      | 1.4864               | Type<br>330Cb  | N08330           | -        | -   | 0.02   | 19.50          | 34.50          | -     | -        | Nb                              |                 |          |         | х               |          | x                 |        |
|                            | Alloy 825                    | R90610                                      | -                    | Alloy 825      | -                | 33       | -   | 0.01   | 22.30          | 42.90          | 3.20  | -        | Cu, Ti                          |                 |          | х       |                 |          |                   |        |
|                            | 2101/4162                    | R61710                                      | 1.4162               | 2101           | -                | 28       | -   | 0.030  | 21.50          | 1.50           | 0.30  | 0.220    | 0.7 Si 5.0Mn Cu                 |                 |          |         |                 | х        | х                 |        |
|                            | 2304/4362                    | R63021                                      | 1.4362               | 2304           | -                | 26       | -   | 0.015  | 22.50          | 4.70           | 0.25  | 0.110    | 0.45Si 0.95 Mn                  |                 |          |         |                 | х        | х                 |        |
|                            | 2209                         | R64621                                      | 22 9 3 N L           | 2209           | S39209           | 35       | -   | 0.01   | 23.00          | 8.75           | 3.15  | 0.16     | Al                              |                 |          | х       |                 | х        |                   |        |
|                            | 2507                         | R64777                                      | 1.4410               | -              | -                | 42       | -   | 0.020* | 25.0           | 6.6            | 3.80  | 0.28     | -                               |                 |          |         |                 | $\Box$   | х                 |        |
| Duplex                     | 2205                         | R64721                                      | 1.4462               | -              | -                | 35       | -   | 0.02   | 22.3           | 5.2            | 3.20  | 0.18     | -                               |                 |          |         |                 |          | х                 |        |
| ď                          | 2205/4462                    | R64770                                      | 1.4462               | 2205           | -                | 37       | -   | 0.017  | 22.20          | 5.20           | 3.20  | 0.180    | Al                              |                 |          |         |                 | х        |                   |        |
|                            | 2594                         | R64773                                      | 25 9 4 NL            | 2594           | -                | 42       | -   | 0.01   | 25.10          | 9.50           | 4.00  | 0.25     | Al                              |                 |          | х       |                 | _        |                   |        |
|                            | 2307                         | R65620                                      | 23 7 NL              | 2307           | -                | 27       | -   | 0.01   | 23.50          | 7.70           | -     | 0.14     | -                               |                 |          | х       |                 | _        |                   |        |
|                            | 2504                         | R65630                                      | 25 4                 | -              | -                | 26       | -   | 0.07   | 25.30          | 4.50           | -     | -        | -                               |                 | Ш        | х       |                 | _        |                   |        |
|                            | 312                          | R65670                                      | 29 9                 | 312 / 29-9     | -                | 32       | -   | 0.100  | 30.35          | 9.20           | -     | 0.055    | Al                              |                 |          | х       |                 | х        |                   |        |
| atior                      | 17–7PH                       | R56021                                      | 1.4568               | 631            | S17700           | 17       | -   | 0.08   | 16.50          | 7.65           | -     | -        | Al                              |                 | х        |         |                 | _        | х                 |        |
| Precipitation<br>hardening | Alloy 286/4980 air<br>melted | R56910                                      | 1.4980               | A-286          | S66286           | 18       | -   | 0.05   | 14.6           | 24.7           | 1.2   | -        | Al, Ti                          | х               |          |         |                 |          |                   |        |
| Prec<br>har                | Alloy 286/4980 VAR           | R56960                                      | 1.4980               | A-286          | S66286           | 18       | -   | 0.05   | 14.6           | 24.7           | 1.2   | -        | Al, Ti, V                       | х               |          |         | х               |          |                   |        |
|                            | , <u></u>                    |                                             |                      |                |                  | _        |     |        |                |                |       |          |                                 |                 | zed o    | hem     | istries o       | n den    | nand.             | (*     |

PACKAGING METHODS

Thanks to a company history starting already 1873, Fagersta Stainless belongs to one of the world leading producers of stainless wire rod and wire. With customized chemistries the products fulfill everything from simple to high demanding applications. For more information see our product leaflets or visit our web site.

#### COIL

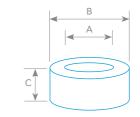





| WIRE ROD    |      |  |  |  |  |  |  |  |
|-------------|------|--|--|--|--|--|--|--|
| A (mm)      | 950  |  |  |  |  |  |  |  |
| B (mm)      | 1250 |  |  |  |  |  |  |  |
|             |      |  |  |  |  |  |  |  |
| Weight (kg) | 1000 |  |  |  |  |  |  |  |

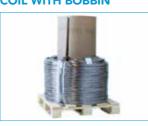
(Transportation bag as an extra option)

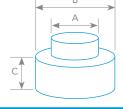
#### **COIL ON A PALLET**






| WIRE        |                  |
|-------------|------------------|
| A (mm)      | 450              |
| B (mm)      | 600 - 750        |
| Pallet (mm) | 1200 x 800 x 100 |

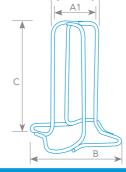

#### **COMPACT COIL ON A PALLET**






| WIRE        |         |           |         |          |
|-------------|---------|-----------|---------|----------|
|             | 408/500 | 408/1000  | 409/500 | 409/1000 |
| A (mm)      | 540     | 540       | 600     | 600      |
| B (mm)      | 750     | 800       | 800     | 850      |
| C (mm)      | 400     | 600       | 400     | 610      |
| Weight (kg) | 500     | 1000      | 500     | 1000     |
| Pallet (mm) |         | 800 x 800 | 0 x 100 |          |

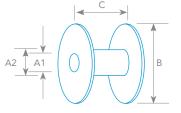
#### **COIL WITH BOBBIN**






| WIRE        |                 |
|-------------|-----------------|
| A (mm)      | 450             |
| B (mm)      | 800             |
| C (mm)      | 1000            |
|             |                 |
| Weight (kg) | 1000            |
| Pallet (mm) | 800 x 800 x 100 |
|             |                 |

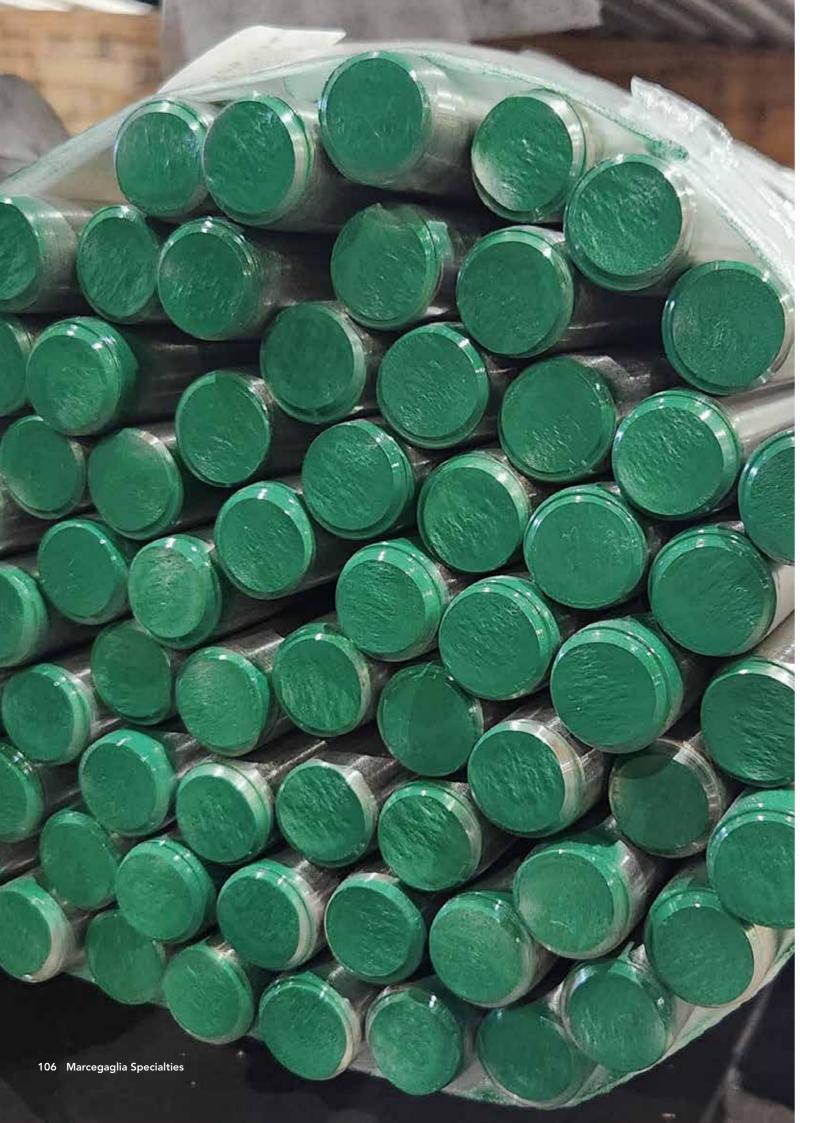
#### **COIL WITH TUBE CARRIER**






| WIRE        |                 |         |           |        |        |  |
|-------------|-----------------|---------|-----------|--------|--------|--|
|             | S 1300          | HD 1000 | M 1200    | L 1000 | XL 650 |  |
| A1 (mm)     | 350             | 400     | 530       | 635    | 810    |  |
| A2 (mm)     | 410             | 460     | 600       | 710    | 870    |  |
| B (mm)      | 920             | 920     | 1000      | 1070   | 1340   |  |
| C (mm)      | <b>mm)</b> 1270 |         | 1200      | 1050   | 650    |  |
| Weight (kg) | 1000            | 1000    | 1000      | 1000   | 1000   |  |
| Pallet (mm) |                 |         | 1150 x 11 | 1000   |        |  |

#### SPOOL






| WIRE        |          |           |          |
|-------------|----------|-----------|----------|
|             | Spool 17 | Spool 800 | Spool 67 |
| A1 (mm)     | 32       | 80        | 42       |
| A2 (mm)     | 406      | 406       | 406      |
| B (mm)      | 750      | 800       | 760      |
| C (mm)      | 285      | 500       | 360      |
| Weight (kg) | 300      | 800       | 500      |
| Tare (kg)   | 38       | 130       | 47       |

Customized chemistries on demand. (\*Max)





## Marcegaglia Stainless Richburg Stainless Steel Bars

Marcegaglia produces high-performance stainless steel bars in an industry-leading variety of grades and shapes.

Our end-to-end approach, from melting to testing, means that we can offer a full range of long products with industry-leading consistency, delivery performance, and technical support.

Marcegaglia high-performance stainless steel bars are produced in an extremely wide selection of grades, including our Prodec range for superior machinability. We have long-term partnerships with service centers that operate in several end-use segments: chemical, oil & gas, automotive, aerospace to name a few.

We are proud to serve you with superior communication and technical expertise. We're here to support you all the way from materials selection to end use, helping you to get the best result possible from our stainless steels.

## Key benefits

- Product quality and broad offering
- Delivery reliability
- Technical expertise
- Easy to deal with

## Our mill

Richburg Stainless Bar is well known for its high quality Prodec bars and technical expertise. The unit was established in 1994 and produces bars in premium commodity and special grades. Bars are produced from billets made in the Marcegaglia meltshop in the UK and hot rolled at several facilities. Marcegaglia Richburg produces quality cold finished bars from ¼ inch to 15 inches.

Contact sales at richburg.sales@stainless-marcegaglia.com

# BAR PROGRAM

Items shown are produced regularly for quick delivery from stock or within competitive industry lead-times. Please call a Marcegaglia representative for availability.

| ROUND BARS                           | OUND BARS |       |       |       |       |     |     |     |        |     |
|--------------------------------------|-----------|-------|-------|-------|-------|-----|-----|-----|--------|-----|
|                                      | 303       | 304 L | 304 H | 316 L | 317 L | 310 | 321 | 347 | 253 MA | 416 |
| 1/ <sub>4</sub> -1 CDA               | Р         | Р     | Р     | Р     | Р     |     | х   | х   |        |     |
| % <sub>16</sub> -1 CFA               | Р         | Р     | Р     | Р     | Р     | х   | х   | х   | х      | х   |
| >1-3 <sup>3</sup> / <sub>4</sub> CFA | Р         | Р     | Р     | Р     | Р     | х   | х   | х   | х      | х   |
| 2-3½ HRART                           | Р         | Р     | Р     | Р     | Р     | х   | х   | х   | х      | х   |
| >3½-7 HRART                          | Р         | Р     | Р     | Р     | Р     | х   | х   | х   |        | х   |
| >7-10 HRART                          | Р         | Р     |       | Р     |       |     |     |     |        |     |
| >10-15 HRART                         | Р         | Р     |       | Р     |       |     |     |     |        |     |

|                                      | 440 C | 17-4 | 15-5ESR | 15-5VAR | LDX 2101® | 2205 +2 | 2507 | 304 HN         | N60            | XM-19          | XM-25          |
|--------------------------------------|-------|------|---------|---------|-----------|---------|------|----------------|----------------|----------------|----------------|
| 1/ <sub>4</sub> -1 CDA               |       |      |         |         |           |         |      |                |                |                |                |
| % <sub>16</sub> -1 CFA               |       | Р    | х       | х       | х         |         |      |                | χ <sup>A</sup> |                | x <sup>A</sup> |
| >1-3 <sup>3</sup> / <sub>4</sub> CFA | х     | Р    | х       | х       | х         | х       | х    | χ <sup>B</sup> | χ <sup>B</sup> | ХB             | х              |
| 2-3½ HRART                           | х     | Р    | х       | х       | х         | х       | х    | χ <sup>B</sup> | х              | x <sup>B</sup> | х              |
| >3½-7 HRART                          |       | Р    |         |         |           | х       | х    |                |                |                | х              |
| >7-10 HRART                          |       |      |         |         |           |         |      |                |                |                |                |
| >10-15 HRART                         |       |      |         |         |           |         |      |                |                |                |                |

**P**: PRODEC® Improved Machinability **A**: Alloy only available down to  $\frac{1}{4}$ "

**CDA**: Cold Drawn Annealed **B**: HS available from 1<sup>3</sup>/<sub>8</sub>" to 3<sup>1</sup>/<sub>2</sub>"

**CFA**: Cold Finished Annealed

**HRART**: Hot Rolled Annealed Rough Turned

| HEXAGONAL |     |       |       |     |     |  |  |  |
|-----------|-----|-------|-------|-----|-----|--|--|--|
|           | 303 | 304 L | 316 L | 321 | 347 |  |  |  |
| 1/4"-1"   | х   | х     | х     | х   | х   |  |  |  |
| 1"-11/2"  | х   | х     | х     |     |     |  |  |  |
| 21/2"     | х   | х     | х     |     |     |  |  |  |

| LENGTH CAPABILITIES |       |                  |  |  |  |  |  |  |
|---------------------|-------|------------------|--|--|--|--|--|--|
| 1/4"-1              | CDA   | 12' STD, 16' Max |  |  |  |  |  |  |
| 1/2"-33/4"          | CFA   | 12' STD, 24' Max |  |  |  |  |  |  |
| 2"-31/2"            | HRART | 12' STD, 24' Max |  |  |  |  |  |  |
| >31/2"-7"           | HRART | 12' STD, 30' Max |  |  |  |  |  |  |
| >7"-15"             | HRART | Inquire          |  |  |  |  |  |  |

#### OTHER VALUE FEATURES OF OUR BAR PROGRAM:

**PRODEC®**: For improved machinability 303, 304L, 316L and 17-4 P come standard as Prodec® Quality Material. **Complete program**: Standard and special grades, in sizes from

 $^{1}/_{4}$ " to 15" round and  $^{3}/_{8}$ " to  $2^{1}/_{2}$ " hexagonal. **Quality**: Marcegaglia Bar is ISO 9001/AS9100/PED approved.

Each bundle is "XRF" grade assured. **Conditions**: 17-4 & 15-5 aged conditions, strain hardened austenitics, and Q&T martensitics available upon inquiry.

**DFARS Compliant**: All material produced is 225.7002-3B1 & 252.225.7014 compliant.

**Polished surface**: CD and CF products  $\frac{9}{16}$ " to 3" (including hexagonal to 1").

**Centerless Grinding**:  $\frac{1}{4}$  - to  $\frac{1}{2}$  -standard tolerance available in  $\frac{1}{4}$  to 4" diameters.

**Eddy Current testing**: Standard for 303 and 416 grades. Available upon request in other grades.

**Chamfering**: Both ends in drawn products and one end for CF products through  $1^{1}/_{k}$ ".

**Defense**: Offering various grades to support the firearms industry.

#### **SPECIFICATIONS**

| Grade                 | UNS                      | ASTM         | ASME           | Federal  | AMS                 |
|-----------------------|--------------------------|--------------|----------------|----------|---------------------|
| 303                   | \$30300                  | A 582        | NA             | NA       | 5640                |
| 304 / 304L            | S30400 / S30403          | A 276, A 479 | SA-479, SA-276 | QQS 763F | 5639, 5647, QQS 763 |
| 316 / 316L            | S31600 / S31603          | A 276, A 479 | SA-479, SA-276 | QQS 763F | 5648, 5653, QQS 763 |
| 317 / 317L            | S31700 / S31703          | A 276, A 479 | SA-479, SA-276 | QQS 763F | QQS 763             |
| 309, 309S             | S30900 / S30909 / S30908 | A 276, A 479 | SA-479, SA-276 |          | 5650                |
| 310, 310S             | S31000 / S31009 / S31008 | A 276, A 479 | SA-479, SA-276 |          | 5651                |
| 321 / 321H            | S32100 / S32109          | A 276, A 479 | SA-479, SA-276 |          | 5645                |
| 347 / 347H            | S34700 / S34709          | A 276, A 479 | SA-479, SA-276 |          | 5646                |
| 253 MA                | S30815                   | A 276, A 479 | SA-479, SA-276 |          |                     |
| 410                   | S41000                   | A 276, A 479 | SA-479, SA-276 | QQS 763F | 5612, 5613, QQS 763 |
| 416                   | S41600                   | A 582        |                |          | 5610                |
| 440C                  | S44004                   | A 276        |                | QQS 763F | QQS 763, 5630, 5880 |
| 17-4                  | S17400                   | A 564        | SA-564         |          | 5643                |
| 15-5 ESR/VAR          | S15500                   | A 564        | SA-564         |          | 5659                |
| EN lean duplex 1.4162 | S32101                   | A 276, A 479 | SA-479, SA-276 |          |                     |
| 2205                  | S31803 / S32205          | A 276, A 479 | SA-479, SA-276 |          |                     |
| 2507                  | S32750                   | A 276, A 479 | SA-479, SA-276 |          |                     |
| 304HN                 | \$30452                  |              |                |          |                     |
| N60                   | S21800                   | A 276, A 479 |                |          | 5848                |
| XM-19                 | S20910                   | A 276, A 479 | SA-479, SA-276 |          |                     |

#### **TOLERANCES - STAINLESS STEEL BAR**

|                                                             | Conforms to ASTM A 484 |                                                                         |                                   |                                       |                                                      |             |  |  |  |
|-------------------------------------------------------------|------------------------|-------------------------------------------------------------------------|-----------------------------------|---------------------------------------|------------------------------------------------------|-------------|--|--|--|
| Round Bar/Cold Finishe                                      | Round Bar/Hot Rol      | led and Roug                                                            | h Turned                          | Square Bar and Hexagons/Cold Finished |                                                      |             |  |  |  |
| Size Tolerances                                             |                        | Size                                                                    | Tolerances                        | Out of<br>Round                       | Size                                                 | Tolerances  |  |  |  |
| Under 5/16"                                                 | ±0.001                 | Over 2" to 21/2"                                                        | + <sup>1</sup> / <sub>32</sub> -0 | 0.023                                 | Under <sup>5</sup> / <sub>16</sub> "                 | +.000-0.002 |  |  |  |
| 5/ <sub>16</sub> " up to but excluding 1/ <sub>2</sub> "    | ±0.0015                | Over 2 <sup>1</sup> / <sub>2</sub> " to 3 <sup>1</sup> / <sub>2</sub> " | + <sup>3</sup> / <sub>64</sub> -0 | 0.035                                 | Over 5/16" to under 1/2"                             | +.000-0.003 |  |  |  |
| <sup>1</sup> / <sub>2</sub> " up to but excluding 1"        | ±0.002                 | Over 3 <sup>1</sup> / <sub>2</sub> " to 4 <sup>1</sup> / <sub>2</sub> " | + <sup>1</sup> / <sub>16</sub> -0 | 0.046                                 | <sup>1</sup> / <sub>2</sub> " up to and including 1" | +.000-0.004 |  |  |  |
| 1" up to but excluding 11/2"                                | ±0.0025                | Over 4 <sup>1</sup> / <sub>2</sub> " to 5 <sup>1</sup> / <sub>2</sub> " | +5/64-0                           | 0.058                                 | Over 1" up to and including 2"                       | +.000-0.006 |  |  |  |
| 1¹/₂" up to and including 3¹/₄"                             | ±0.003                 | Over 5 <sup>1</sup> / <sub>2</sub> " to 6 <sup>1</sup> / <sub>2</sub> " | + <sup>1</sup> / <sub>8</sub> -0  | 0.070                                 | Over 2" up to and including 3"                       | +.000-0.008 |  |  |  |
| Over $3^{1}/_{4}$ up to and including $4^{1}/_{2}$          | ±0.005                 | Over 6 <sup>1</sup> / <sub>2</sub> " to 8"                              | +5/32-0                           | 0.085                                 | Over 3"                                              | +.000-0.010 |  |  |  |
| Over 4 <sup>1</sup> / <sub>2</sub> " up to and including 6" | ±0.008                 | Over 8" to 12"                                                          | +3/16-0                           | 0.094                                 |                                                      |             |  |  |  |

#### STRAIGHTNESS TOLERANCES FOR MACHINE-STRAIGHTENED BAR

| Rough Turned                                                         | Cold Finished                             |
|----------------------------------------------------------------------|-------------------------------------------|
| <sup>1</sup> / <sub>8</sub> " in any 5'                              | 1/ <sub>16</sub> " in any 5'              |
| but may not exceed $\frac{1}{8}$ x $\frac{\text{length in feet}}{5}$ | but may not exceed 1/16" x length in feet |

#### WEIGHT FORMULAS FOR STEEL

| Weight estimates per linear foot    |
|-------------------------------------|
| Rounds= D <sup>2</sup> x 2.6729     |
| Hexagonals= D <sup>2</sup> x 2.9473 |

# Ensuring quality with end-to-end production

## Marcegaglia Stainless Richburg



Melting shop Consistently produced high quality semis are made at the SMACC melting shop.



Billet feedstock
Our rolling mill uses billet
feedstock produced at the
SMACC melting shop.




Hot rolling Rod coil feedstock is produced at several facilities.




Bar heat treatment
Various heat treatments
performed on bar to
achieve the optimal
material properties.



Cold drawing operation Coil is drawn through a die, reducing the cross-sectional area of the bar.

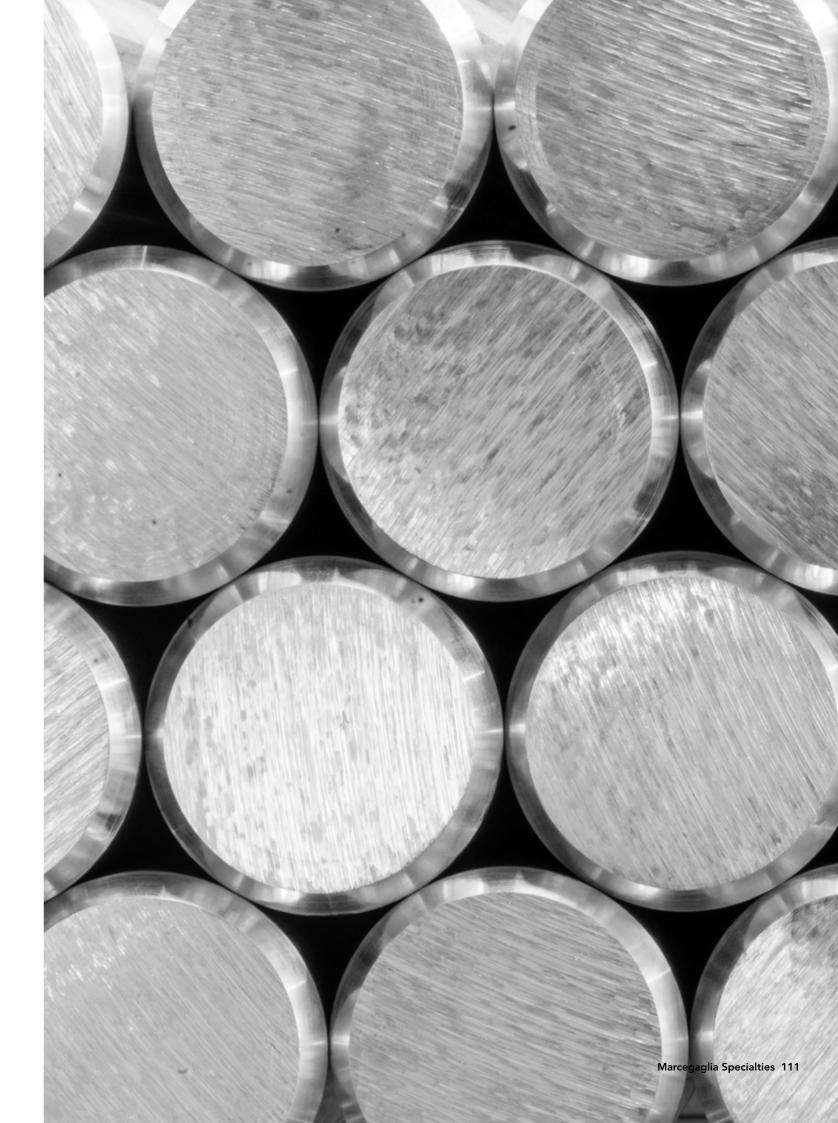


Finishing
Peeling of bars enhances
surface quality and
tolerances.



Testing
Dimensional and
Eddy-Current inspection
are standard.




Packing & shipping
Final process steps include
inspection, packing,
and shipping.

## High quality according to international standards

Our manufacturing programs are supported by in-house product inspection and testing, and the extensive experience of our technical team. Richburg is accredited to recognized international standards, including:

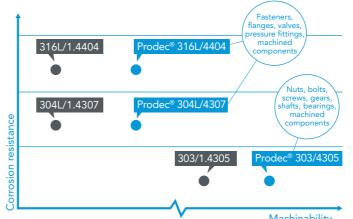
- ISO 9001
- AS9100
- PED/PER


- Each bundle is "XRF" grade assured
- DFARS compliant

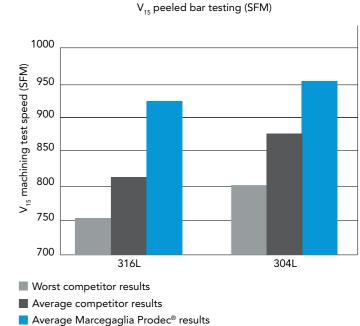


## Prodec<sup>®</sup> datasheet US -Stainless steel bar optimized for improved machinability

## General characteristics


Stainless steel grades optimized for improved machinability with longer tool life and enhanced quality.




| Product name                                                                                                                                                                                                                                                                                                            | Typical applications                                                                                                                                                                                   |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>Prodec® 304L</b> A version of 304L with improved machinability. Improves productivity with faster machining, longer tool life, better dimensional tolerances, superior machined surface quality, and improved yields compared to conventionally produced 304L.                                                       | <ul> <li>Fasteners</li> <li>Flanges and valves</li> <li>Pressure fittings</li> <li>Machined components</li> </ul>                                                                                      |
| Prodec® 316L A version of 316L with improved machinability. Improves productivity with faster machining, longer tool life, better dimensional tolerances, superior machined surface quality, and improved yields compared to conventionally produced 316L.                                                              | <ul> <li>Fasteners</li> <li>Flanges and valves</li> <li>Pressure fittings</li> <li>Machined components</li> </ul>                                                                                      |
| Prodec® 303 For applications that use 303. This product gives you faster machining, longer tool life, better tolerances, superior machined surface quality, and reduced scrap losses compared to conventionally produced 303.                                                                                           | <ul> <li>Nuts, bolts, and screws</li> <li>Gears</li> <li>Shafts</li> <li>Bearings</li> <li>Machined parts for process equipment</li> </ul>                                                             |
| <b>Prodec® 17-4PH</b> A martensitic, precipitation hardening stainless steel for applications that use 17-4PH. It improves productivity with faster machining, longer tool life, better dimensional tolerances, superior machined surface quality, and improved yields when compared to conventionally produced 17-4PH. | <ul> <li>Fasteners</li> <li>Flanges</li> <li>Oil field valve equipment</li> <li>Pressure fittings</li> <li>Chemical process equipment</li> <li>Paper mill equipment</li> <li>Aircraft parts</li> </ul> |

## Product performance comparison

#### Corrosion resistance vs machinability



#### Bar – faster machining with Prodec®



Testing done with  $Prodec^{\circ}$  and 7 European competitors' bars with improved machinability in grades 316L and 304L. The tool used for testing was a cemented carbide insert.

#### Bar – cost savings with Prodec®

|                                |     | Standard<br>316L | Prodec®<br>316L | Improvement |     |
|--------------------------------|-----|------------------|-----------------|-------------|-----|
| Cutting speed                  | sfm | 300              | 450             | 150         |     |
| Processing time/component      | min | 16.9             | 7.7             |             | 54% |
| Total machining cost/component | \$  | 26.6             | 12.1            | 14.5        | 55% |
| Productivity increase          | %   |                  |                 |             | 54% |
| Savings/component              | \$  |                  |                 | 14.5        |     |

A cost saving example for rough turning a 6» diameter Prodec® 316L peeled bar with a cemented carbide tool

## Products and dimensions

| Imperial   |               |
|------------|---------------|
| Round bar  | Offering (in) |
| Cold drawn | 0.25–1.00     |
| Peeled     | 0.50-15       |

| Imperial               |               |
|------------------------|---------------|
| Hexagon and square bar | Offering (in) |
| Hexagon                | 0.25-2.5      |



## Typical chemical compositions

The chemical composition is given as % by mass.

| Grade Marcegaglia |                | ASTM |        | PRE | Typical chemical composition, % by mass |      |      |     |   |          |
|-------------------|----------------|------|--------|-----|-----------------------------------------|------|------|-----|---|----------|
| family            | family name    | TYPE | UNS    | PRE | С                                       | Cr   | Ni   | Мо  | N | Others   |
| Α                 | Prodec® 304L   | 304L | S30403 | 18  | 0.02                                    | 18.1 | 8.1  | _   | _ | -        |
| Α                 | Prodec® 316L   | 316L | S31603 | 24  | 0.02                                    | 16.8 | 10.1 | 2.1 | _ | _        |
| Α                 | Prodec® 303    | 303  | S30300 | 17  | 0.05                                    | 17.2 | 8.1  | _   | _ | 0.3S     |
| PH                | Prodec® 17-4PH | 630  | S17400 | 16  | 0.02                                    | 15.5 | 4.8  | _   | _ | 3.4Cu Nb |

Chemical compositions and PRE calculations are based on Marcegaglia typical values

Pitting Resistance Equivalent is calculated using the following formula:

 $PRE = %Cr + 3.3 \times %Mo + 16 \times %N$ 

Surface finish and other factors determine the actual corrosion resistance of a particular product.

## Corrosion resistance

Although improvements in machinability have been associated with reduced corrosion resistance in the past, the Prodec® treated products have shown corrosion resistance within the range typically expected from comparable stainless steel products.

Prodec® 304L is a versatile, general-purpose stainless steel with good resistance to atmospheric corrosion, many organic and inorganic chemicals, as well as foods and beverages. It has also been used in vacuum-processing equipment and specialized instruments where high integrity is essential.

Prodec® 316L provides improved resistance to pitting and crevice corrosion in environments containing chlorides and other halides.

Prodec® 303 is resistant to mildly corrosive environments. In order to achieve the best possible corrosion resistance, all Prodec® 303 parts should be chemically treated to remove sulfides from the final surface.

Prodec® 17-4PH is a precipitation hardening product with corrosion resistance similar to that of standard 304. It is used in applications where a combination of moderate corrosion performance and high strength is required.



## Mechanical properties

| Grade        | Diameter /        |           | Requirements |           |        |  |  |  |
|--------------|-------------------|-----------|--------------|-----------|--------|--|--|--|
| Grade        | Round or hex size | UTS (ksi) | YS (ksi)     | % El (4D) | % RA   |  |  |  |
| Prodec® 304L | ½" and smaller    | 90 – 115  | 45 min       | 30 min    | 50 min |  |  |  |
|              | Larger than ½"    | 75 – 115  | 30 min       | 40 min    | 50 min |  |  |  |
| Prodec® 316L | ½" and smaller    | 90 – 115  | 45 min       | 30 min    | 50 min |  |  |  |
| Frodec 310L  | Larger than ½"    | 75 – 115  | 30 min       | 30 min    | 50 min |  |  |  |
| Prodec® 303  | ½" and smaller    | 125 max   | NONE         | NONE      | NONE   |  |  |  |
|              | Larger than ½"    | NONE      | NONE         | NONE      | NONE   |  |  |  |

#### 304L and 316L Hardness Requirement

| Diameter /<br>Round or hex size | Requirement                           |
|---------------------------------|---------------------------------------|
| 2" and smaller                  | 140 - 255 HB (76-100 HRB, 22 max HRC) |
| Greater than 2"                 | 0 – 255 HB (0-100 HRB, 22 max HRC)    |

#### 303 Hardness Requirement

255 HB or 25 HRC max

#### 17-4PH (Annealed Condition)

363 HB or 38 HRC max

#### 17-4PH

Can be heat treated at several temperatures between 900F and 1150F to achieve a variety of hardness and tensile values. The grade is often machined in the annealed condition then heat treated to achieve the final properties.

## Physical properties

| Imperial            |                      |                                   |                                                           |                                        |                                        |                                      |  |  |  |
|---------------------|----------------------|-----------------------------------|-----------------------------------------------------------|----------------------------------------|----------------------------------------|--------------------------------------|--|--|--|
| Marcegaglia<br>name | Density<br>[lbm/in³] | Modulus<br>of elasticity<br>[psi] | Coefficient of thermal expansion 68-212 °F [µin/(in* °F)] | Thermal conductivity [Btu/(hr*ft* °F)] | Thermal<br>capacity<br>[Btu/(lbm* °F)] | Electrical<br>resistivity<br>[μΩ*in] |  |  |  |
| Prodec® 304L        | 0.285                | 29 * 106                          | 8.89                                                      | 8.7                                    | 0.119                                  | 28.74                                |  |  |  |
| Prodec® 316         | 0.289                | 29 * 10 <sup>6</sup>              | 8.89                                                      | 8.7                                    | 0.119                                  | 29.53                                |  |  |  |
| Prodec® 303         | 0.285                | 29 * 106                          | 8.89                                                      | 8.7                                    | 0.119                                  | 28.74                                |  |  |  |
| Prodec® 17-4PH      | 0.282                | 29 * 106                          | 6.06                                                      | 9.2                                    | 0.119                                  | 27.95                                |  |  |  |

Values according to EN 10088-1.

### **Fabrication**

#### Machining

Prodec® products enable higher machining speeds, longer tool life, and superior part quality with reduced total cost for finished parts.

Prodec® 304L and Prodec® 316L are special variants of standard Types 304 (UNS S30400) / 304L (UNS S30403) and 316 (UNS S31600) / 316L (UNS S31603) respectively with enhanced metallurgy for better machinability. The general rules for machining stainless steel also apply to the Prodec® grades.

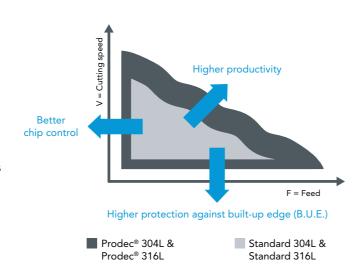
The difference is that Prodec® grades enable a longer tool life and/or tougher machining conditions. The machining window illustrated on the right gives a

demonstration of this.

#### Machining guidelines

The cutting parameters in this guideline will work under normal cutting conditions. It is suggested to begin with cutting parameters in the ranges indicated in the tables and then to improve parameters by moving to higher or lower speed, feed or depth of cut until best performance is reached. It is possible to end up in a range somewhat outside the values indicated in the tables depending on the actual machine set-up.

#### Turning


- The machine and setup must be rigid
- Use shortest possible tool length
- Use coolant
- Use smallest possible nose radius to avoid vibrations

#### Milling

- Avoid cutting through holes/cavities
- Ensure good chip evacuation, recutting of chips may cause tool damage

#### Drilling - high speed steel twist drills

- Use coolant
- If possible use internal coolant through drill
- Use of cobalt high alloyed drills is preferred
- With PVD-coated HSS drills the cutting speed can be increased by 10%
- Use as short drill as possible



## Machining parameters for Prodec<sup>®</sup> 304L and 316L

|           | Carbide Tooling |                  |         |             |  |
|-----------|-----------------|------------------|---------|-------------|--|
| Turning   | Grade           | Feed<br>(in/rev) | SFM     | DoC<br>(in) |  |
| Finishing | M10-20          | 0.004            | 840-930 | < 0.08      |  |
| Medium    | M10-25          | 0.010            | 650-850 | 0.08 - 0.2  |  |
| Roughing  | M20-35          | 0.015            | 150-750 | 0.2-0.4     |  |

|              | Carbide Tooling |       |         |  |
|--------------|-----------------|-------|---------|--|
| Milling      | Grade           | Feed  | SFM     |  |
| Face Milling | M10-25          | 0.004 | 485-825 |  |
| Side Milling | M10-30          | 0.010 | 580-800 |  |
| End Milling  | M10-30          | 0.015 | 480-725 |  |

|                                | HSS Tooling      |           |       |       |
|--------------------------------|------------------|-----------|-------|-------|
| Drilling<br>(HSS Cobalt Alloy) | Diameter<br>(in) | RPM       | Feed  | SFM   |
|                                | 0.04             | 2850-3800 | 0.002 | 30-40 |
|                                | 0.12             | 1600-1750 | 0.004 | 50-55 |
|                                | 0.2              | 955-1050  | 0.005 | 55-65 |
|                                | 0.4              | 470-625   | 0.006 | 55-65 |
|                                | 0.6              | 350-415   | 800.0 | 55-65 |
|                                | 0.8              | 265-310   | 0.012 | 55-65 |
|                                | 1.2              | 175-210   | 0.012 | 55-65 |

#### Forming

#### Cold forming

Prodec® products can be readily formed and fabricated with the full range of cold forming operations. They can be used in heading, drawing, bending, and upsetting. Cold forming operations will increase the strength and hardness of the material, and may leave it slightly magnetic.

For Prodec® 17-4PH, cold forming or fabrication should be completed prior to the final solution annealing and age hardening treatments.

#### Hot forming

Prodec® 303, Prodec® 304L, and Prodec® 316L can be forged in the 1700–2200 °F range. For maximum corrosion resistance, forgings should be annealed at a minimum temperature of 1900 °F and then water quenched or rapidly cooled by other means after hot forming operations.

Prodec® 17-4PH should be uniformly heated to 2150–2200 °F for a minimum of one hour. It should not be forged below about 1850 °F. Forgings must be solution annealed before the final aging treatment.

#### Welding

Prodec® 304L is readily weldable with the full range of conventional welding methods with the exception of oxyacetylene. AWS E308/ER308 or E308L/ER308L filler metals should be used, but molybdenum-containing austenitic stainless steel filler metals may also be considered. After welding, it may be necessary to fully anneal to restore the corrosion resistance lost by sensitization to intergranular corrosion when chromium carbides were precipitated in the grain boundaries in the weld heat-affected zone (HAZ).

Prodec® 316L is readily welded with the full range of conventional welding methods with the exception of oxyacetylene. AWS E316L/ER316L and other low-carbon filler metals with a molybdenum content higher than that of the base metal should be used.

Prodec<sup>®</sup> 303 stainless steel is not recommended for applications requiring welding. When welding is necessary, AWS E312 filler metal may be considered. An alternative product for parts requiring welding is Prodec<sup>®</sup> 304L.

Prodec® 17-4PH can be satisfactorily welded with either 630 or AWS E308L/ER308L welding

consumables. However, the 308L filler metal cannot be heat treated to the same mechanical properties as the base metal. The thermal cycle associated with welding can substantially alter the condition of Prodec® 17-4PH. To obtain the properties considered characteristic of Prodec® 17-4PH, the material should be solution annealed and aged after welding.

#### Standards and approvals

The most commonly used international product standards are given in the table below.

#### Standards

- ASME SA 479
- ASTM A479
- ASTM A276
- ASTM A564
- ASTM A582
- SAE AMS for various grades

#### Certificates and approvals

Marcegaglia Stainless Richburg meets the most common certifications and approvals:

- AD 2000 Merkblatt
- Approval of Material Manufacturers
- Factory Production Control Certificate
- ISO 9001
- ISO 14001
- Pressure Equipment Regulation (PER)
- Pressure Equipment Directive (PED)
- AS9100

## Contacts and enquiries

#### Contact us

Our experts are ready to help you choose the best stainless steel product for your next project.

# Machining guideline for Prodec® 304L and Prodec® 316L

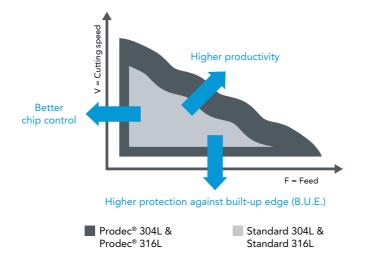
Prodec® 304L and Prodec® 316L are special variants of standard Types 304 (UNS S30400) / 304L (UNS S30403) and 316 (UNS S31600) / 316L (UNS S31603) respectively with enhanced metallurgy for better machinability. The general rules for machining stainless steel also apply to the Prodec® grades.

The difference is that Prodec® grades enable a longer tool life and/or tougher machining conditions.

The machining window illustrated on the right gives a demonstration of this.

Other fabrication operations such as welding, hot working and cold working can be performed in the same way as for standard 304L and 316L.

#### Product forms


Prodec® 304L and Prodec® 316L are available as round and hexagon bars.

#### Machining guidelines

The cutting parameters in this guideline will work under normal cutting conditions. It is suggested to begin with cutting parameters in the ranges indicated in the tables and then to improve parameters by moving to higher or lower speed, feed or depth of cut until best performance is reached.

It is possible to end up in a range somewhat outside the values indicated in the tables depending on the actual machine set-up.

A guide for further optimization of cutting parameters can be found under the "Troubleshooting" section on the next page.



#### **Turning**

- The machine and setup must be rigid
- Use shortest possible tool length
- Use coolant
- Use smallest possible nose radius to avoid vibrations

#### Millina

- Avoid cutting through holes/cavities
- Ensure good chip evacuation, recutting of chips may cause tool damage

|           | Carbide Tooling |                  |         |             |  |
|-----------|-----------------|------------------|---------|-------------|--|
| Turning   | Grade           | Feed<br>(in/rev) | SFM     | DoC<br>(in) |  |
| Finishing | M10-20          | 0.004            | 840-930 | < 0.08      |  |
| Medium    | M10-25          | 0.010            | 650-850 | 0.08 - 0.2  |  |
| Roughing  | M20-35          | 0.015            | 150-750 | 0.2-0.4     |  |

|              |        | Carbide Tooling |         |  |  |
|--------------|--------|-----------------|---------|--|--|
| Milling      | Grade  | Feed            | SFM     |  |  |
| Face Milling | M10-25 | 0.004           | 485-825 |  |  |
| Side Milling | M10-30 | 0.010           | 580-800 |  |  |
| End Milling  | M10-30 | 0.015           | 480-725 |  |  |

#### Drilling - high speed steel twist drills

- Use coolant
- If possible use internal coolant through drill
- Use of cobalt high alloyed drills is preferred
- With PVD-coated HSS drills the cutting speed can be increased by 10%
- Use as short a drill as possible

|                                | HSS Tooling   |           |       |       |
|--------------------------------|---------------|-----------|-------|-------|
| Drilling<br>(HSS Cobalt Alloy) | Diameter (in) | RPM       | Feed  | SFM   |
|                                | 0.04          | 2850-3800 | 0.002 | 30-40 |
|                                | 0.12          | 1600-1750 | 0.004 | 50-55 |
|                                | 0.2           | 955-1050  | 0.005 | 55-65 |
|                                | 0.4           | 470-625   | 0.006 | 55-65 |
|                                | 0.6           | 350-415   | 0.008 | 55-65 |
|                                | 0.8           | 265-310   | 0.012 | 55-65 |
|                                | 1.2           | 175-210   | 0.012 | 55-65 |

## Other machining operations

#### Cut-of

 Reduce feed by 50% approximately 6mm from the center

#### Reaming

Type of coolant: emulsion or cutting oil

#### **Tapping**

- For blind holes use spiral flute grinding for good chip evacuation
- For through holes use spiral point grinding with gun nose to push the hips forward

#### Threading single insert

- Full profile insert for high quality thread forms
- V-profile insert threading with minimum tool inventory
- Multipoint insert for economic threading in mass production

#### Drilling indexable insert

Cutting data is very dependent on the drill design.
 Hence, the manufacturers recommendations
 must be considered

## Troubleshooting



#### Flank wear

For longer tool life – reduce cutting speed or use a harder insert.



#### Notch wear

Notch wear is a common wear mechanism when machining stainless steel. Increased cutting speed will reduce notch but increase flank wear. If possible, use an insert with smaller entering angle 60-80 degrees or variable cutting depth or softer insert grade.



#### Built-up edge (B.U.E.)

Built-up edge occurs when the cutting speed is too low and the stainless steel tends to stick to the tool (in milling the chips stick to the tool). To avoid – increase cutting speed or use another coating.



#### Plastic deformation

To avoid – reduce either cutting speed, feed or use a harder insert.



#### Long chips

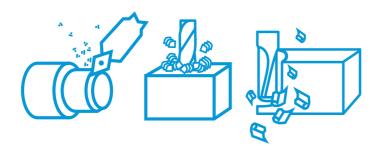
To avoid – increase feed or use an insert with smaller chip breaker.



|                              | Carbide Tooling          |             |         |  |
|------------------------------|--------------------------|-------------|---------|--|
| Other Machining Operations   | Grade                    | Feed        | SFM     |  |
| Cut-off                      | M25                      | 0.002-0.006 | 325-500 |  |
| Reaming                      | M10-M30                  | 0.004-0.016 | 170     |  |
| Tapping                      | -                        | -           | -       |  |
| Threading single insert      | M10-M30                  | -           | 300-450 |  |
| Drilling w/indeaxable insert | Center M30 Periphery M10 | 0.002-0.005 | 650-825 |  |

# Machining guideline for Prodec® 303

Prodec® 303 is a fully resulfurized free-machining austenitic stainless steel. The Prodec® brand name means this steel has been specially melted and treated by Marcegaglia's proprietary ladle metallurgy techniques to maximize machinability while retaining good mechanical properties, corrosion resistance, and forming characteristics. This free cutting stainless steel gives you faster machining, longer tool life, better tolerances, superior machined surface quality, and reduced scrap losses compared to conventionally produced 303.




Prodec® 303 is available as round and hexagon bars.

#### Machining guidelines

The cutting parameters in this guideline will work under normal cutting conditions. It is suggested to begin with cutting parameters in the ranges indicated in the tables and then to improve parameters by moving to higher or lower speed, feed or depth of cut until best performance is reached. It is possible to end up in a range somewhat outside the values indicated in the tables depending on the actual machine set-up. A guide for further optimization of cutting parameters can be found under the "Troubleshooting" section on the next page.





#### Turning

- The machine and setup must be rigid
- Use shortest possible tool length
- Use coolant
- Use smallest possible nose radius to avoid vibrations

#### Milling (only end milling)

- · The machine and setup must be rigid
- Use shortest possible tool length
- Use coolant
- Use smallest possible nose radius to avoid vibrations

|           | Carbide Tooling |                  |          |             |  |
|-----------|-----------------|------------------|----------|-------------|--|
| Turning   | Grade           | Feed<br>(in/rev) | SFM      | DoC<br>(in) |  |
| Finishing | M10-15          | <0.010           | 590-1230 | < 0.004     |  |
| Roughing  | M25-35          | 0.010-0.025      | 300-720  | 0.005-0.2   |  |

|             |       | Carbide Tooling |         |  |  |
|-------------|-------|-----------------|---------|--|--|
| Milling     | Grade | Feed            | SFM     |  |  |
| End Milling | M35   | 0.002-0.008     | 160-820 |  |  |

#### Drilling - high speed steel twist drills

- Use coolant
- If possible use internal coolant through drill
- Use of cobalt high alloyed drills is preferred
- With PVD-coated HSS drills the cutting speed can be increased by 10%
- Use as short drill as possible

|                                | HSS Tooling   |           |        |       |
|--------------------------------|---------------|-----------|--------|-------|
| Drilling<br>(HSS Cobalt Alloy) | Diameter (in) | RPM       | Feed   | SFM   |
|                                | 0.04          | 4100-4900 | 0.0025 | 42-52 |
|                                | 0.12          | 2000-2300 | 0.005  | 62-72 |
|                                | 0.2           | 1400-1650 | 0.006  | 72-85 |
|                                | 0.4           | 700-830   | 0.008  | 72-85 |
|                                | 0.6           | 470-560   | 0.010  | 72-85 |
|                                | 0.8           | 350-420   | 0.016  | 72-85 |
|                                | 1.2           | 230-290   | 0.016  | 72-85 |

## Other machining operations

#### Cut-off

 Reduce feed by 50% approximately 6mm from the center

#### **Tapping**

- For blind holes use spiral flute grinding for good chip evacuation
- For through holes use spiral point grinding with gun nose to push the chips forward

#### Threading single insert

- · Full profile insert for high quality thread forms
- V-profile insert threading with minimum tool inventory
- Multipoint insert for economic threading in mass production

#### **Forming**

- Use coolant
- The machine and setup must be rigid
- Use shortest possible tool length

|                               |         | Carbide Tooling |         |  |  |
|-------------------------------|---------|-----------------|---------|--|--|
| Other Machining<br>Operations | Grade   | Feed            | SFM     |  |  |
| Cut-off                       | M30     | 0.002-0.006     | 260-660 |  |  |
| Tapping                       | -       | -               | -       |  |  |
| Threading                     | M10-M30 | -               | 300-450 |  |  |

## Troubleshooting



#### Flank wear

For longer tool life – reduce cutting speed or use a harder insert.



#### Notch wear

Notch wear is a common wear mechanism when machining stainless steel. Increased cutting speed will reduce notch but increase flank wear. If possible, use an insert with smaller entering angle 60-80 degrees or variable cutting depth or softer insert grade.



#### Built-up edge (B.U.E.)

Built-up edge occurs when the cutting speed is too low and the stainless steel tends to stick to the tool (in milling the chips stick to the tool). To avoid – increase cutting speed or use another coating.



#### Plastic deformation

To avoid – reduce either cutting speed, feed or use a harder insert.



#### Long chips

To avoid – increase feed or use an insert with smaller chip breaker.







#### HEADQUARTERS

MARCEGAGLIA Gazoldo degli Ippoliti via Bresciani, 16 46040 Gazoldo degli Ippoliti, Mantova - Italy

www.marcegaglia.com
SALES OFFICES - ITALY:

MARCEGAGLIA stainless steel division

46040 Gazoldo degli Ippoliti, Mantova - Italy phone +39 . 0376 685 367 inox@marcegaglia.com

#### PLANTS AND SALES OFFICES - WORLDWIDE:

#### MARCEGAGLIA STAINLESS SHEFFIELD

#### SMACC MELTSHOP

Europa Link, S9 1TZ, Sheffield – United Kingdom phone +44 114 261 6190 smacc.sales@stainless-marcegaglia.com

#### **SSB BAR FINISHING MILL**

Europa Link, S9 1TZ, Sheffield – United Kingdom phone +44 114 261 5200 sales.bar@stainless-marcegaglia.com sales.rebar@stainless-marcegaglia.com

#### ASR WIRE ROD MILL

Stevenson Road, S9 3XG, Sheffield – United Kingdom phone +44 114 261 5200 sales.asr@stainless-marcegaglia.com sales.rebar@stainless-marcegaglia.com

#### MARCEGAGLIA FAGERSTA STAINLESS

P.O. box 508 SE, 73725, Fagersta – Sweden phone +46 223 455 00 www.fagersta-stainless.se

#### MARCEGAGLIA STAINLESS RICHBURG

3043 Crenshaw Pkwy, Richburg, SC 29729 – USA phone 803-789-5383 • fax 803-789-3177 richburg.sales@stainless-marcegaglia.com